
Noname manuscript No.
(will be inserted by the editor)

An Optimization Framework for the Design of
Noise Shaping Loop Filters with Improved Stability
Properties

Brett C. Hannigan · Christian L.
Petersen · A. Martin Mallinson · Guy
A. Dumont

Received: date / Accepted: date

Abstract A framework using semidefinite programming is proposed to en-
able the design of sigma delta modulator loop filters at the transfer function
level. Both continuous-time and discrete-time, low-pass and band-pass designs
are supported. For performance, we use the recently popularized Generalized
Kalman-Yakubovič-Popov (GKYP) lemma to place constraints on the H∞
norm of the noise transfer function (NTF) in the frequency band of interest.
We expand the approach to incorporate common stability criteria in the form
of H2 and `1 norm NTF constraints. Furthering the discussion of stability, we
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introduce techniques from control systems to improve the robustness of the
feedback system over a range of quantizer gains. The performance-stability
trade-off is examined using this framework and motivated by simulation re-
sults.

Keywords sigma delta modulation · semidefinite programming · noise
transfer function · generalized KYP lemma · analog/digital conversion

1 Introduction

Sigma delta modulators (Σ∆Ms) are nonlinear feedback systems containing
a noise shaping filter and coarse quantizer element. Applied as an A/D con-
verter, the systems operate on an oversampled input and produce a discrete-
time, sampled value output. The feedback loop contains a noise shaping loop
filter that pushes the error introduced by quantization out of the signal band,
where it can be removed by a digital decimation filter outside the loop. The
sigma delta architecture is widely used to digitize signals with moderate fre-
quency content because of high resolution and reliance on less expensive digital
circuitry rather than precision analog components. However, the presence of a
nonlinearity in the feedback system makes analysis difficult and higher order
systems are prone to instability.

The design of the loop filter transfer function may be done in many ways.
Often, a linearized model is used, where the nonlinear quantizer is replaced by
a fixed gain and an additive “quantization noise” signal. A loop filter of just
one or two pure integrators is provably stable for dc inputs with magnitude less
than one [29]. For higher orders, a common approach is to design a prototype
noise transfer function (NTF), equivalent to the sensitivity function S(λ) of
the linearized model. The popular Delta Sigma Toolbox for MATLAB [29]
uses the Chebyshev type II filter as an NTF prototype where the stop-band
attenuation is related to the performance and the peak out-of-band gain is a
proxy for instability.

Optimization techniques have been used in place of prototype filters to
generate suitable noise transfer functions. For example, the CLANS approach
assumes the quantization error can be represented as white noise, then uses
nonlinear optimization to minimize the integral of this signal in the pass-band.
[11]. Genetic algorithms have been used to design continuous-time sigma delta
modulators with a combination of linear approximations and simulations [19].
Using the linear matrix inequality (LMI) methods from H∞ control, one can
define the quantizer as a very simple feedthrough plant and augment it with
weighting filters with desirable noise rejection properties. The loop filter is then
designed as an optimal controller for performance and stability [21]. However,
the system is bound to the order of the augmented plant and this method
relies on the designer to select the weighting filters.

The Generalized Kalman-Yakubovič-Popov (GKYP) lemma provides a way
to optimize noise rejection over a finite frequency interval, eliminating the need
for weighting filters. Unfortunately, the problem becomes non-convex if both
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poles and zeros are to be optimized. As a way around this, the poles may be
fixed [24] or a finite impulse response (FIR) loop filter may be assumed [20,31],
which is a sub-optimal choice [6]. Alternatively, iterative methods have been
shown to provide a workaround forH∞ minimization [15]. GKYP optimization
can also be carried out to limit the reduction in performance resulting from
quantization of the filter coefficients in the hardware implementation of the
loop filter [4].

In Section 2 of this paper, we outline the structure of a general Σ∆M
and introduce several stability criteria with varying levels of robustness. In
Section 3, we introduce a semidefinite programming (SDP) framework used
to optimize performance of the modulator under these stability criteria. In
Section 4, simulation results are shown to compare modulator performance
under different stability conditions. This paper is concerned with sigma delta
A/D converters with single bit quantization, but would be easily generalizable
to D/A designs and those with multi-bit quantization. Most of the paper is
focused on the discrete-time (λ = z) systems used in switched capacitor designs
but the framework also works with continuous-time (λ = s) systems with the
caveat that many of the stability criteria are no longer valid. The frequency
range of interest is from dc to the clock frequency driving the sample-and-hold
block, located at the input for discrete-time modulators and in the loop for
continuous-time modulators. The signal band is restricted to a small fraction
of the system sampling frequency and expressed as the oversampling ratio
(OSR). Using the proposed method, discrete-time modulators can be designed
to a given OSR then scaled to any necessary sampling frequency. Continuous-
time designs require the inclusion of constrains around the signal band as seen
in Section 4.5.

2 Background

2.1 General Sigma Delta Modulator Model

In its general case, the block diagram of the sigma delta A/D converter is
shown in Figure 1. The two input, one output loop filter H(λ) may be manip-
ulated into a conventional, negative feedback loop filter H1(λ) and an input
pre-filter H0(λ) operating on input signal r without loss of generality. The
pre-filter may be used to shape the signal transfer function (STF) to unity,
and can be neglected in this analysis to focus on the design of H1(λ). The
nonlinear quantizer has been modelled by a variable gain K and the addition
of fictitious quantization noise d that is summed with the output of the filter
to produce output signal y, which is passed to the digital decimation filters.

For optimization, we are interested in placing constraints on the closed
loop sensitivity function S(λ) and possibly on the system robustness to the
uncertain quantizer gain. For the former, we introduce a performance channel
e at the feedback error, which is equivalent to the NTF shown in Figure 1.
For the latter, we model K as a multiplicative uncertainty and extract the
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Fig. 1 The general linearized Σ∆M block diagram with variable gain and additive quanti-
zation noise signal (see Section 2.1).
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Fig. 2 The augmented system is derived from Figure 1 by setting H0(λ) = 1, taking the
LFT of the uncertain gain, extracting the signals of interest, and writing the closed-loop
equations.

norm-bounded uncertain block ∆ using the upper linear fractional transform
(LFT), as is common in robust control problems. The input w and output z
encompass a robustness channel and matrix M2×2 is a constant gain block.

From this model, an augmented state-space model is derived. Let the loop
filter H1(λ) be an order n strictly proper rational transfer function of the
form shown in (1), which has an equivalent state-space representation (2).
Naturally, the state-space feedthrough matrix DH must be zero to impose
closed-loop realizability.

H1(λ) =
bn−1λ

n−1 + bn−2λ
n−2 + . . .+ b1λ+ b0

λn + an−1λn−1 + an−2λn−2 + . . .+ a1zλ+ a0
(1)

= CH(λI −AH)−1BH (2)

Taking w(t), r(t) as inputs and z(t), e(t), u(t), y(t) as outputs, the aug-
mented system G(λ) from Figure 2 may be shown in matrix form in (3),
where mij is element (i, j) of gain matrix M . The notation Gqp(λ) indicates
the transfer function of G(λ) from some input channel p(t) to some output
channel q(t). The state-space matrices of G are denoted in (4).
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G :


λx(t)
z(t)
e(t)
u(t)
y(t)

 =


AH −m22BHCH −m21BH BH

m12CH m11 0
−m22CH −m21 1
CH 0 0

m22CH m21 0


x(t)
w(t)
r(t)

 (3)

=


A Bw Br
Cz Dzw Dzr
Ce Dew Der
Cu Duw Dur
Cy Dyw Dyr


x(t)
w(t)
r(t)

 (4)

2.2 Performance Goal and Stability Criteria

Modulator design is done by solving a multiobjective optimization problem
with a single performance goal and one or more of the four stability criteria
discussed in this section. The criteria range from heuristics to sufficient con-
ditions. We introduce these criteria and show how they can be interpreted as
norm bounds on the augmented system (4), which may be solved using the
framework in Section 3.

2.2.1 Performance Goal

The common performance goal in the optimization process is the H∞ norm
of the noise transfer function. We specify a frequency range of interest [ωl, ωh]
centred at the signal band with width inversely proportional to the OSR of
the modulator. Using the GKYP LMI expression, the H∞ norm of the NTF in
the signal band is minimized, either below a target value (feasibility problem)
or as low as possible (optimization problem). With reference to the state space
system (3), the GKYP constraint is placed on the r → e channel as shown in
Problem 1.

Problem 1 Given frequency range of the signal band [ωl, ωh], find the follow-
ing for stable H1(λ):

min
λ∈[ωl,ωh]

||Ger(λ)||∞

2.2.2 H∞ Stability Criterion

Lee’s rule is a heuristic predictor of stability which states that a modulator
is likely to be stable if the NTF peak out-of-band gain, or H∞ norm of the
sensitivity function, does not exceed a benchmark value [5]. The criterion is
not necessary nor sufficient for stability and must be verified with extensive
simulations. Generally, ||S(z)||∞ = 2 is used, but this has been found to be
conservative for low-order and insufficient for high-order designs [28]. Lee’s
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rule is valid for discrete-time designs only, but has been used extensively and
is easily included as part of an optimization problem. In this framework, the
Lee’s rule heuristic may be applied with an H∞ constraint on the r → e
channel as shown in Problem 2 by using the GKYP lemma with an infinite
frequency interval.

Problem 2 For given positive γ∞, find H1(λ) such that:

||Ger(λ)||∞ < γ∞.

2.2.3 Root Locus Stability

With single-bit quantization, the instantaneous quantizer gain K is in the
interval [k0, k1] = [1/||u||∞,∞] with nominal value k0. One method to de-
sign stable Σ∆M loop filters is to position the poles and zeros such that the
root locus remains in the stable region of the complex plane when sweeping
through this interval [32,13,10]. Using our optimization framework, the non-
linear quantizer gain is modelled as a multiplicative parametric uncertainty.
Using the definition of the upper LFT [34, Def. 10.1], uncertain gain K is split
into fixed certain gain matrix M and norm-bounded uncertain part ∆:

K = FU{M,∆} ||∆||∞ < 1

= m22 +m21∆ (1−m11∆)
−1
m12

To find the entries of matrix M for a range of gains K ∈ [kl, kh], we
use the fact that FU{M, 1} = kh, FU{M, 0} = k0, and FU{M,−1} = kl that
follows from the normalized nature of ∆. Equation 5 shows M found by setting
m21 = 1 and solving the system of equations.

M =

[
kh−2k0+kl
kh−kl

−2(k0−kh)(k0−kl)
kh−kl

1 k0

]
(5)

The root locus stability criterion can be used in the optimization framework
by constraining the H∞ norm to unity for the z → w robustness channel and
minimizing the performance goal like in previous sections.

Problem 3 Given M from (5) with gain kl < K < kh, find stable H1(λ) such
that:

||Gzw(λ)||∞ < 1.

2.2.4 H2 Stability Criterion

A statistical look at the Σ∆M loop with a single-bit quantizer shows that if
the probability density function (PDF) of u at the quantizer input is known,
the quantizer gain K is no longer undefined, the quantization noise d is un-
correlated to the input r, and the stability of the modulator can be evaluated
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[25]. With this analysis, the stability is dependent on the PDF and the power
gain from d to y, which is equal to ||S(λ)||22. In reality, the PDF depends on
the input signal r, but may be assumed to be a standard type such as uni-
form, triangular, or Gaussian. The Gaussian PDF has been shown to be a
close approximation for high-order modulators but is more conservative than
the others [25].

To employ the stability criterion, the H2 LMI is used to constrain the 2-
norm of the r → e channel to a value dependent on the desired maximum
stable input amplitude ||u||∞ and the choice of PDF, as in Problem 4. The H2

criterion is only applicable to discrete-time designs because continuous-time
sensitivity functions have infinite H2 norm.

Problem 4 For given positive γ2, solve the following for stable H1(z):

||Ger(z)||2 < γ2.

2.2.5 Improved `1 Stability Criterion

The bounded-input bounded-output `1 stability criterion is a sufficient crite-
rion for stability. The `1 norm of the loop filter, ||H(λ)||1, denotes its maximal
peak-to-peak gain with a worst-case quantization noise signal. Assuming the
quantized feedback is bounded y ∈ [−1, 1], a limit to ||H(λ)||1 can be derived
that ensures stability for a class of `∞-bounded input signals [2]. This bound
is extremely conservative, but may be improved to some degree by taking ad-
vantage of the fact that the single-bit quantizer is invariant to any choice of
positive gain K that precedes the quantization operation. The improved `1
criterion states that the modulator is guaranteed stable for inputs r where
minK ||S(λ)||1 ≤ 3− ||r||∞ [25]. A time domain interpretation of this stability
criterion is a bound on the sum of impulse response coefficients of the loop
filter. Problem 5 shows the `1 norm optimization objective.

Problem 5 For given positive γ1, solve the following for stable H1(λ):

||Ger(λ)||1 < γ1.

3 Optimization Framework

The optimization framework unifies the expression for the GKYP, H2, and `1
norm LMIs for the augmented system (3) and allows it to be solved despite
the infinite impulse response filter design problem being non-convex.

3.1 GKYP Lemma

The Generalized Kalman-Yakubovič-Popov lemma is a semidefinite expression
that allows H∞ minimization in only a specific finite frequency interval, such
as that used in solving Problem 1.



8 Brett C. Hannigan et al.

Lemma 3.1 (GKYP lemma [8]) Given state-space matrices A ∈ Rn×n,
Bp ∈ Rn×1, Cq ∈ R1×n, Dqp ∈ R1×1 of system Gqp(λ), frequency range [ωl, ωh],
and symmetric matrix variables P,Q ∈ Rn×n, the finite frequency condition:

||Gqp(λ)||2∞ < γ2∞ ωl ≤ λ ≤ ωh
holds if and only if Q ≥ 0 and quadratic matrix inequality (QMI):

−
[
A Bp
I 0

]T
(Φ⊕ P + Ψ ⊕Q)

[
A Bp
I 0

]
+

−
[
Cq Dpq
0 I

]T [
1 0
0 −γ2∞

] [
Cq Dpq
0 I

]
≥ 0 (6)

is satisfied, where ⊕ denotes the Kronecker product. For the continuous-
time case:

Φ =

[
0 1
1 0

]
Ψ =

[
−1 jωc
−jωc −ω1ωh

]
(7)

while for the discrete-time case:

Φ =

[
1 0
0 −1

]
Ψ =

[
0 ejωc

e−jωc −2 cosw0

]
(8)

where1:

ω1 =

{
−ωh ωl = 0

ωl otherwise
, ωc =

ωh + ω1

2
, ω0 =

ωh − ω1

2
.

For H∞ minimization across all frequencies, i.e. in Problem 3, Lemma 3.1
is modified by fixing Q and adding an additional non-negative definiteness
constraint:

Q = 0 P ≥ 0. (9)

Although the strict inequality form of (6) is typically used in control prob-
lems (e.g. [33]), the non-strict positive-real LMI is presented here because
it allows poles to occupy the unit circle (discrete-time) or imaginary axis
(continuous-time) [9], as is often seen in heuristic-based Σ∆M designs. To
use the nonstrict inequality, the system must also be controllable, a guarantee
of which follows in Section 3.4.

1 The high-pass case of Lemma 3.1 where ωh =∞ (continuous-time) or ωh = π (discrete-
time) is a special case and not shown here, because only low-pass or band-pass modulators
are commonly used. For more information on high-pass GKYP design, see [8].
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3.2 H2 Semidefinite Expression

The H2 norm can be minimized between 2 channels by solving a pair of in-
equalities with some similarities to Lemma 3.1.

Theorem 3.2 Given state-space matrices A ∈ Rn×n, Bp ∈ Rn×1, Cq ∈ R1×n,
Dqp ∈ R1×1 of system Gqp(λ), symmetric matrix variable P ∈ Rn×n and Φ
from (7) or (8), the H2 condition:

||Gqp(λ)||22 < γ22

holds if and only if the following QMI and LMI are satisfied:

−
[
A Bp
I 0

]T
(Φ⊕ P )

[
A Bp
I 0

]
+

[
0 0
0 1

]
> 0 (10) γ22 Cq DqpCTq P 0

DTqp 0 1

 > 0. (11)

Proof Simplifying (10) by multiplying outer factors and summing yields:

−
[
PA+ATP PBp
BTp P −1

]
> 0 (12)

for continuous-time designs. AssumingDqp = 0 as is necessary for the continuous-
time case, (11 )simplifies to: [

γ22 Cq
CTq P

]
> 0. (13)

Equations 12 and 13 comprise the well-known H2 QMI for continuous-time
systems [27,18]. For the discrete-time case, the simplification of (10) along the
same lines results in: [

−ATPA+ P −ATPBp
−BTp PA −BTp PBp + 1

]
> 0 (14)

which can be manipulated into the form:[
P 0
0 1

]
−
[
AT
BTp

]
P
[
A Bp

]
> 0. (15)

By Schur complement around P−1, this becomes:P−1 A BpAT P 0
BTp 0 1

 > 0. (16)

Finally, after a congruent transformation of (16) by diag (P, I, 1), combining
it with (11) matches the well-known H2 QMI for discrete-time systems [18].
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3.3 `1 Semidefinite Expression

The computation of the `1 norm is made tractable by instead minimizing
the ?-norm, an upper bound on the `1 norm. The ?-norm minimization is a
set of 1 LMI, 1 QMI, and 1 bilinear matrix inequality (BMI) with a scalar
parameter that enters nonlinearly. The equations can be solved by running a
one-dimensional constrained minimization problem.

Theorem 3.3 Given state-space matrices A ∈ Rn×n, Bp ∈ Rn×1, Cq ∈ R1×n,
Dqp ∈ R1×1 of system Gqp(λ), symmetric matrix variable P ∈ Rn×n, auxiliary
scalar variables µ > 0, ν > 0, and α ∈ (0, 1), and Φ from (7) or (8), the
?-norm condition:

||Gqp(λ)||2? < γ2?

holds if and only if P ≥ 0, the following QMI and BMI:

−
[
A Bp
I 0

]T ((
Φ+

[
0 0
0 α

])
⊕ P

)[
A Bp
I 0

]
+

+

[
0 0
0 1

]
> 0

(17)

αP 0 Cq
0 µ− 1 Dqp
CTq DTqp ν

 > 0 (18)

are satisfied for some α, and the following LMI is also satisfied:

γ2? µ νµ 1 0
ν 0 1

 > 0. (19)

Proof The proof proceeds in a similar way to that of Theorem 3.2 by trans-
forming (17) as was done with (10) in Proof 3.2. Then, combined with (18)
and (19), the equations are in the form of the ?-norm semidefinite program
reported in literature [3,22].

3.4 Convexification

Equations 6, 10, and 17 are non-convex because there are products between the
state-space matrices and the optimization variable P . The number of product
terms can be reduced by assuming the state space system (2) is in controllable
canonical form (CCF) as shown below:
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λx =

AH︷ ︸︸ ︷
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−a0 −a1 −a2 · · · −an−1

x +

BH︷︸︸︷
0
0
...
0
1

 e (20)

u =
[

b0 b1 b2 · · · bn−1
]︸ ︷︷ ︸

CH

x (21)

where aH ≡
[
a0 a1 a2 · · · an−1

]T
and bH ≡

[
b0 b1 b2 · · · bn−1

]T
for brevity.

Note that when the system (2) is in CCF, sub-systems Ger(λ) and Gzw(λ)
(3) are in CCF as well, possibly after a trivial state-space transformation by
T = 1

−m21
In for the latter to ensure that the lower element of TBw is unity.

Having the system in CCF also permits the use of the non-strict GKYP lemma
because the system is controllable by definition. In the following, we seek to
design aH and bH by solving an optimization problem in different variables
consisting of one or more of Problems 1–5.

3.4.1 Change of Variables

Let a ≡ aH +m22bH , the negative transpose of the lower row of A, and define
b ≡ aH for system Ger(λ) and b be that shown in (22) depending on the
subsystem Gqp(λ). The semidefinite program is redefined in terms of these
variables to simplify nomenclature.

b ≡


−m22bH Gqp(λ) = Ger(λ)

−m12m12bH Gqp(λ) = Gzw(λ)

m22bH Gqp(λ) = Gyr(λ)

bH Gqp(λ) = Gur(λ)

(22)

3.4.2 Sensitivity Shaping

Addressing Problem 1, the authors of [15, Th. 1] have shown that a congruent
transformation of Equation 6 by the matrix:[

I a
0 1

]
(23)

on the left and its transpose on the right eliminates any products between
a, b and P , Q, restoring linearity in the first summation term. This leaves
only products between a and b in the second term of (6). Simplifying and
using a Schur complement results in only one non-convex term, that is aaT in
the upper-left block. The procedure in [15] is only applicable to shaping the
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sensitivity function Ger(λ) because it assumes D = 1. A full derivation that is
valid for any D, such as that encountered when solving Problem 3, is given in
Appendix A.1.

3.4.3 H2, `1 Optimization

The congruent transformation procedure from Section 3.4.2 does not depend
on the centre expression (that may be a function of any of Φ, Ψ , P , Q) so it
is applicable to both H2 (10) and `1 (17) cases, which have the same outer
factors. This procedure restores linearity to the first summation term, while
the second term of both is the same. Equation 24 shows this second term with
congruent transformation (23) applied:

[
I a
0 1

] [
0 0
0 1

] [
I a
0 1

]T
=

[
aaT a
aT 1

]
(24)

It is seen that, like (6), the other semidefinite programs can undergo a
change of variables to have the same, single nonlinear term aaT . The full
expression is given in Appendix A.2.

3.4.4 Iterative Procedure

The solving of a quadratically constrained LMI is a difficult problem. Several
methods of solving (28) and (35) were attempted but had poor results. These
included directly using a general non-convex solver, using a rank-constrained
LMI solver [23], and using Shor’s relaxation to linearize the problem [14]. In-
stead, we use the iterative method from [30] which, for problems with simple
non-convexities, appears to be similar to the method used in [15] but with
an extra parameter to guarantee finite convergence. The iterative LMI prob-
lems generated with this method were solved numerically using the YALMIP
Toolbox for MATLAB [17] with the LMILAB solver [7].

4 Design Examples

The following design examples are intended to show how the optimization
framework can be used with various stability criteria to design Σ∆Ms. In
Examples 4.1 to 4.4, we designed discrete-time fourth- or fifth-order loop filters
with an oversampling ratio of 32 intended for audio applications, i.e. low pass
signals with Nyquist frequency 44.1 kHz. This architecture of modulator has
been used for digital audio [26,1]. In Example 4.5, we designed a continuous-
time modulator for the same application.
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4.1 H∞ Design

The H∞ design procedure is done by solving Problem 1 while enforcing sta-
bility with Problem 2. We used Lemma 3.1 for the former and also for the
latter, along with conditions in Equation 9, which implicitly forces the NTF
to be stable. In this example, the Lee criterion of γ∞ = 1.5 was chosen. The
optimization problem converged to the loop filter transfer function:

H1(z) =
0.799

(
z2 − 1.59z + 0.657

) (
z2 − 1.92z + 0.966

)
(z − 0.954) (z2 − 1.95z + 0.953) (z2 − 1.99z + 0.994)

.

The sensitivity function of this filter can be seen in Figure 3. Note that
the Lee criterion for stability is satisfied across all frequencies and the peak
gain in the signal band has been minimized to −64 dB by the GKYP lemma.
This compared favourably (in the H∞ sense) to the design produced with the
toolbox2 in [29], which has peak gain in the signal band of −55 dB.

Like most high-order designs using the Lee criterion, stability is condi-
tional on input amplitude. A simulation of this can be seen in Figure 4, also
performed with the Delta Sigma Toolbox. A peak signal-to-quantization-noise
ratio (SQNR) of 86 dB at an input amplitude of 0.62 was achieved with a max-
imum stable input amplitude (MSIA) of 0.71 and a minimum resolvable input
amplitude of −91 dB full scale (FS). The comparable toolbox design achieved
a very similar peak SQNR but with a slightly better MSIA and minimum
resolvable input amplitude of 0.76 and −96 dB FS, respectively.

4.2 Robust Root Locus Design

The root locus design technique is equivalent to solving Problems 1 and 3 si-
multaneously. Similar to the previous example, we applied Lemma 3.1 to the
sensitivity channel r → e for performance and Lemma 3.1 along with condi-
tions in Equation 9 to the robustness channel w → z for stability. While a
sufficient condition for stability would be that the root locus remains in the
stable region for all positive quantizer gains K, this produces a very conserva-
tive design. Instead, we investigated how using the quantizer gain robustness
criterion can be used to enhance the stable input range of Design 4.1. Instabil-
ity in Σ∆Ms is often associated with low quantizer gains. To improve stability,
we modulate the lower bound of the quantizer gain, kl, and solve the optimiza-
tion problem. Thus, kl is a parameter that trades off performance and stability.
We designed a fourth order modulator in order to compare it with the root
locus design method described in [16]. With some trial-and-error, kl = 0.08
was the lowest lower bound on the quantizer gain that maintained empirical
full-scale stability. The solver converged to the loop transfer function:

2 The Delta Sigma Toolbox command synthesizeNTF(5, 32, 1, 1.5, 0) was used to
produce the transfer function used in this comparison.
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Fig. 3 The sensitivity function of the design in Example 4.1. The dark shaded area repre-
sents the stability constraint and the light shaded area represents the achieved noise atten-
uation performance.

-120 -100 -80 -60 -40 -20 0

Input amplitude, relative to full scale (dB)

-40

-20

0

20

40

60

80

100

S
ig

n
a
l-
to

-q
u
a
n
ti
z
a
ti
o
n
-n

o
is

e
 r

a
ti
o
 (

d
B

)

Simulated SQNR vs. Input Amplitude for H  Design
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Fig. 4 An SQNR plot of 247 simulations of the design in Example 4.1 to an input sinusoid
of frequency 3.46× 104 rad s−1 and varying amplitude to investigate its conditional stability.

H1(z) =
2.16 (z − 0.852)

(
z2 − 1.93z + 0.947

)
(z2 − 1.96z + 0.958) (z2 − 1.98z + 0.993)

The robustness and sensitivity channels are shown in Figure 5 and the root
locus is shown in Figure 6. A simulation like done previously confirmed that
system is stable for input amplitudes up to full scale. As expected when order
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Fig. 5 Upper: a frequency response plot of the robustness channel for the design in Ex-
ample 4.2. The H∞ norm of the transfer function is below 1 (shaded region) for all fre-
quencies, showing that the system is stable for all norm-bounded quantizer gains in the
range [0.085,∞). Lower: the nominal sensitivity function of the same design along with sen-
sitivity functions for randomly sampled quantizer gains with the achieved noise attenuation
performance shaded.
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Fig. 6 A subset of the complex plane showing the root locus of the filter from Example 4.2
across quantizer gains.
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is decreased and stability is increased, the empirical peak SQNR is reduced,
to 63 dB with the minimum resolvable input amplitude at −53 dB FS. In com-
parison, a similar fourth-order, 32 OSR sigma delta modulator designed using
the procedure described in [16] with the root locus stability criterion achieves
a peak SQNR of 52 dB at the margin of full-scale input stability.

4.3 H2 Design

The H2 design technique is done by solving Problems 1 and 4. The former is
for performance and uses Lemma 3.1 while the latter favours stability and uses
Theorem 3.2. In this example, we designed a modulator for the same specifica-
tions as Example 4.1. One advantage of the H2 criterion is that there is a more
systematic way to target a specific MSIA using the Gaussian PDF [25]. For a
target MSIA of 0.46, the criterion was satisfied when ||Ger(z)||22 < 2.246. Using
this constraint along with the performance optimization, the solver converged
to the loop filter transfer function:

H1(z) =
(z − 0.932)

(
z2 − 1.96z + 0.959

) (
z2 − 1.99z + 0.995

)
(z − 0.374) (z2 − 1.92z + 0.967) (z2 − 1.66z + 0.797)

.

Computing the NTF gain for the optimum value of K = 0.881, we obtain
||Ger(z)||22 = 2.16, indicating that the 2-norm constraint was satisfied. Because
this stability criteria is only an approximation (in this case, pessimistic), the
empirical MSIA was considerably higher at 0.63. The peak SQNR was found
to be 89 dB at an input amplitude of 0.56 FS. The minimum resolvable in-
put amplitude was −98 dB FS. These measurements can be seen in Figure 7.
These results compare closely to the NTF design method in [12, Fig. 5], which
achieved around 90 dB peak SQNR and a very similar stability threshold for
a design with equivalent specifications.

4.4 Guaranteed Stable `1 Design

In this example, we produced a modulator design that is mathematically guar-
anteed to be stable for a range of input amplitudes by solving Problems 1 and
5. As discussed in Section 3.3, the optimization target was an upper bound
on the `1 norm, so there was some trial-and-error to find the ?-norm upper
bound that produces the desired `1 norm bound. In this case, running the op-
timization problem with a ?-norm constraint of 4 resulted in ||S(z)||1 = 2.36
and a loop filter as follows:

H1(z) =
0.444

(
z2 − 1.78z + 0.795

)
(z − 0.944) (z2 − 1.945z + 0.955)

.

This design is guaranteed to be stable for input amplitudes up to 0.64
FS, but empirical stability is seen for the entire input range. The cost for
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Fig. 7 An SQNR plot of 121 simulations of the design in Example 4.3 to an input sinusoid
of frequency 3.46× 104 rad s−1 and varying amplitude to investigate its conditional stability.

this stability was a decrease in performance: a peak SQNR of 62 dB and a
minimum resolvable input amplitude of −40 dB FS. Note that similar to the
case in Example 4.3, there are now 2 pole-zero cancellations in the final loop
filter resulting in an order 3 transfer function. The NTF magnitude for this
design can been seen in Figure 8 as well as its impulse response, the time-
domain equivalent to the `1 norm.

4.5 A Continuous-Time Design

As a proof of concept, we designed a 3rd order continuous-time loop filter to
the same specifications as the discrete-time examples above. In the absence of
stability criteria that may be directly applied to continuous-time designs, we
specified the following (somewhat arbitrary) constraints:

min
ω∈[0,2π·4.41×105]

||Ger(jω)||∞ s.t. (25)

||Ger(jω)||∞ ≤ 4 dB ∀ω (26)

||Gyr(jω)||∞ ≤ −10 dB ω ∈ [2π · 7.056× 105,∞) (27)

The constraint in (25) uses Problem 1 to minimize the in-band noise of
the sensitivity function. The constraint in Equation 26 favours stability using
Problem 1. Unlike discrete-time designs, there is no influence of the quantizer
sampling frequency captured in the first two constraints. Thus, we introduced
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Fig. 8 Upper: The sensitivity function of the `1 norm design from Section 4.4 shows the
signal band rejection has been diminished in order to provide mathematically guaranteed
stability. Lower: the impulse response of the NTF has been minimized by the `1 norm
criterion.

the constraint in Equation 27 to force high roll-off by reducing the comple-
mentary sensitivity function (STF) outside the signal band.

The optimization process converged on the loop filter transfer function:

1.11× 108
(
s2 + 3.25× 106 + 1.178× 1013

)
(s+ 2.37× 108) (s2 + 3.80× 104 + 3.94× 1010)

,

for which the sensitivity and complementary sensitivity functions are shown
in Figure 9 and the spectrum of the simulated quantizer output is shown in
Figure 10.

5 Conclusion

In this paper, we introduce an optimization framework using the GKYP lemma
for IIR loop filter design that is compatible with any stability constraints that
can be defined in terms of H∞, H2, and `1 norms. We allow the robustness
against the linearized quantizer gain to be controlled by forming a closed-
loop system and extracting the uncertainty via LFT. Building on the work
of [15], we expand the GKYP lemma expression to support arbitrary state-
space systems. Finally, the procedure can be used to design continuous-time
Σ∆Ms. The design examples showcase how this procedure may be used with
a wide range of stability criteria and is competitive with existing methods.
The H2 design criteria produced a fourth-order loop filter with 89 dB SQNR
and stability under inputs up to 0.63 FS in simulation. This method of design
is a good balance because it retains performance while allowing stability to



An Optimization Framework for Noise Shaping Loop Filters 19

Fig. 9 Upper: the sensitivity function of the continuous-time design from Section 4.5. Lower:
the complementary sensitivity function with a GKYP constraint to enforce sharp roll-off.

Fig. 10 The 14 000-point FFT of the quantizer output of the continuous-time design from
Section 4.5 shows about 40 dB of noise shaping to a 3.46× 104 rad s−1 input sinusoid with
amplitude 0.5 FS.

be maintained in an intuitive way. While not a guarantee of stability like the
`1 criterion, it relies on reasonable assumptions and is suited for high order,
single-bit designs. The root locus method shares many of these properties,
however, the H2 stability criterion had a more broad and well-behaved range
of design targets that yielded respectable loop filters. Areas of future interest
include a closer look into the termination criteria of the iterative procedure
used to solve the semidefinite program, formalizing how each stability criteria
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affects the resulting filter, using alternative performance criteria, and a better
way of defining constraints for continuous-time designs.
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A Derivation of Matrix Inequalities with One Non-Convex Term

A.1 Derivation of GKYP Inequality with Arbitrary D

Theorem A.1 Equation 6 from Section 3.1 is equivalent to the following: −Ξ11 + aaT −Ξ12 + a −CTq − aDTqp
−ΞT12 + aT −Ξ22 + 1 −DTqp
−Cq − aTDqp −Dqp γ∞

 ≥ 0 (28)

where (28) contains just one nonlinear term in variable a, and:[
Ξ11 Ξ12

ΞT12 Ξ22

]
=

[
I a
0 1

] [
A Bp
I 0

]T
(Φ⊕ Pγ + Ψ ⊕Qγ)

[
A Bp
I 0

] [
I a
0 1

]T

Pγ = γ−1
∞ P Qγ = γ−1

∞ Q. (29)

Proof Starting from (6), we follow the procedure mentioned in Section 3.4.2 to eliminate
non-convex products in the first term of the QMI [15, Th. 1]:

−
[
I a
0 1

] [
A Bp
I 0

]T
f (Φ, Ψ, P,Q)

[
A Bp
I 0

] [
I a
0 1

]T
+ . . . ≥ 0 (30)

and introduce the notation Ξij for this linear part:

−
[
Ξ11 Ξ12

ΞT12 Ξ22

]
+ . . . ≥ 0. (31)

Equation 31 may undergo a congruent transformation by γ
− 1

2∞ I introducing a com-
mutable factor of γ−1

∞ to every element. For the first summation term, we absorb the factor
with redefinition (36) yielding:

−
[
Ξ11 Ξ12

ΞT12 Ξ22

]
−
[
I a
0 1

] [
Cq Dqp
0 I

]T [
γ−1
∞ 0
0 −1

] [
Cq Dqp
0 I

] [
I a
0 1

]T
≥ 0. (32)

Multiplying the inner factors in the second term of (32) leads to:

−
[
Ξ11 Ξ12

ΞT12 Ξ22

]T
−
[
I a
0 1

] [
γ−1
∞ CTq Cq γ−1

∞ CTq Dqp
γ−1
∞ DTqpCq γ

−1
∞ DTqpDqp − 1

] [
I a
0 1

]T
≥ 0

which can be expanded into:

−
[
Ξ11 Ξ12

ΞT12 Ξ22

]
− [

I a
0 1

] [
I aDTqp
0 DTqp

] [
CTq
1

]
γ−1
∞

[
CTq
1

]T [
I aDTqp
0 DTqp

]T [
I a
0 1

]T
+

[
I a
0 1

] [
0 0
0 1

] [
I a
0 1

]T
≥ 0. (33)

The 3 outer factors multiplied with γ−1
∞ in the middle term of (33) are then combined

together and the last summation term is also multiplied through, resulting in the following:
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−
[
Ξ11 Ξ12

ΞT12 Ξ22

]
−
[
CTq + aDTqp
DTqp

]
γ−1
∞

[
CTq + aDTqp
DTqp

]T
+

[
aaT a
aT 1

]
≥ 0. (34)

The last summation term of (34) is then added with the linear part Ξ. Because γ∞ >
0↔ γ−1

∞ > 0, a Schur complement taken around γ∞ allows (34) to be written as the single
matrix inequality (28).

A.2 Derivation of H2 and `1 Inequalities

Theorem A.2 Equations 10 from Section 3.2 and (17) from Section 3.3 are equivalent to
the following: [

−Ξ11 + aaT −Ξ12 + a
−ΞT12 + aT −Ξ22 + 1

]
> 0 (35)

where (35) contains just one nonlinear term in variable a, and:[
Ξ11 Ξ12

ΞT12 Ξ22

]
=

[
I a
0 1

] [
A Bp
I 0

]T
f (Φ, Pγ , α)

[
A Bp
I 0

] [
I a
0 1

]T

f (Φ, Pγ , α) =


Φ⊕ Pγ for the H2 case(
Φ+

[
0 0

0 α

])
⊕ Pγ for the `1 case

(36)

Pγ = γ−1
∞ P. (37)

Proof Starting from either (10) or (17), we follow the procedure mentioned in Section 3.4.3
to eliminate non-convex products in the first term of the QMI independent of f (Φ, Pγ , α).
The second summation term is the same in both QMIs and simplifies as shown in (24).
Combining these results in the matrix inequality (35).


