
1

Fast, analytical method for structured identification
of SISO RC-ladder-type systems

Brett C. Hannigan, Member, IEEE and Carlo Menon, Senior Member, IEEE

Abstract—Structured system identification often requires solv-
ing optimization problems that are not deterministic in com-
putation time and may converge to a local optimum. For the
case of systems that can be represented as a SISO “RC-
ladder” impedance network, this paper presents a closed-form
algorithm that can determine the structured state-space matrices
and extract the parameters from an arbitrarily transformed
system, such as that produced by subspace system identification.
This algorithm relies on a modified version of the Lanczos
tridiagonalization process and the solving of a least squares
problem with dimension equal to the system order. It is fast, de-
terministic, and successful for systems of low to moderate order.
Practical applications include network synthesis, thermal model
identification, and distributed sensing reconstruction, where exact
RC parameter values must be identified from data.

Index Terms—structured identification, RC-ladder, distributed
parameter systems, distributed sensing, tridiagonalization, Lanc-
zos process

I. INTRODUCTION

Systems of the “RC-ladder” form are commonly encoun-
tered in the areas of network synthesis [1], thermal modelling
[2], control [3], VLSI propagation delay modelling [4], and
distributed systems [5], [6], among others. Identification of RC
network parameters at each of the ladder stages is an important
problem, which is difficult with general system identification
approaches. Conventional approaches yield input-output cor-
rect representations from which extracting the parameters is
mathematically complex. A deterministic algorithm to iden-
tify the parameters of RC-ladder systems from data would
allow fast, accurate reconstruction, having applications to the
aforementioned fields where RC-ladder models are prevalent.

As an electrical circuit, RC-ladder impedance networks are
formed of cascaded 1-port resistor-capacitor (RC) stages, as
shown in Figure 1. These systems are characterized by having
a Cauer I type continued fraction expansion impedance trans-
fer function [7], which may be formed recursively following
(1).
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Fig. 1. Model circuit for an n-stage RC-ladder 1-port impedance network.

In the admittance form, the RC-ladder system of interest
may be placed in the state-space structure of (2) (order n = 4
shown) by taking the capacitor voltages as states. A full
discussion on the identifiability of systems of the type (2)
is out of the scope of this paper, however identifiability of
similar systems is often discussed in the context of network
reconstruction [8]. Here, a similar approach to that of [9]
is followed, with focus placed on a method for structural
identification, assuming identifiability.

Identifying RC-ladder systems from data is important in
electrical and thermal modelling, but few methods exist which
identify the Ri and Ci parameters directly. RC network iden-
tification using deconvolution is able to produce an impedance
model and estimate poles and zeros from data [10]. General
“black-box” system identification in the state-space domain
has become efficient and popular since the introduction of
subspace system identification techniques such as the N4SID
algorithm [11]. This algorithm and similar ones estimate a
state-space model from data that correctly models the input-
output behaviour of the system, but which has arbitrary matrix
structure and states. Mathematically, they yield a state-space
system estimate Ŷ which is related to the structured system
by an unknown similarity transformation T such that:

A(~θ) = T−1ÂT

C(~θ) = ĈT (3)

B(~θ) = T−1B̂ (4)

D(~θ) = D̂, (5)

where ~θ is the vector of parameters (i.e. Ri and Ci) that
enter arbitrarily in the system matrices A, B, C, and D.

Retrieving the unknown matrix T to transform the unstruc-
tured system Ŷ into the structured form of (2) is desired so that
the state variables and parameters are known and have physical
interpretation. General structured system identification is a
difficult and well researched problem, which often reduces
to a bilinear, non-convex optimization step [12]. Especially
for large order systems, this optimization is highly sensitive
to the choice of initial conditions [13] and has no guarantees
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of convergence to the global optimum. Several methods have
been studied to avoid or at least reduce the scale of the non-
convex optimization, in order to have deterministic results
and short computation time. For example, machine learning
techniques may be applied to identify stochastic Markov jump
systems [14]. For systems of a specific form (often with the
state-space A matrix having all unknown parameters in a
single row or column and an entirely known C matrix), the
full set of parameters and elements of T can be found by
solving a null space problem [15]. However, this structure
is very limiting and the scale of the problem grows rapidly
at O(n2) with the system order. Various algebraic techniques
have been developed to increase the generality of this approach
[16], even allowing some complex electrical networks to be
parametrically identified [17]. Alternatively, the problem can
be cast as a convex optimization of the Hankel matrix subject
to a (non-convex) rank constraint, which can then be tackled
with an iterative procedure of solving convex semidefinite
programs [12].

Interconnected system identification of large scale networks
has produced many fruitful techniques in the literature that aim
to identify a multiplicity of simple systems while preserving
the global structure that interconnects them [18]. For example,
this can be done by estimating the hidden states that connect
each subsystem from a linear combination of inputs and
outputs from those of its local neighbourhood [19]. Applying
these to the RC-ladder network seems promising in order to
identify each RC filter stage subsystem, from which the Ri
and Ci parameters could be easily extracted. Unfortunately,
these methods require networks where each local system has
external inputs and outputs and is connected only by hidden
states. Thus, they are not directly applicable to the SISO RC-
ladder case of interest here.

Some structured identification methods have been developed
specifically for systems of RC-ladder type (or similar). From
the Routh array calculated from the Markov coefficients,
a closed-form algorithm exists to yield the Cauer I state-
space matrices [7]. This algorithm is a recursive procedure on
the impulse response. More recently, a parameterization was
proposed that frames the problem as a semidefinite program
[9]. This method is applicable to more general RC networks
(as opposed to SISO ladder structures) but can be solved in
a convex fashion only for autonomous systems (i.e. without

input; state-space B matrix absent). However, autonomous
systems of this form have limited practicality outside of
network reconstruction, and solving the non-convex problem
still requires that all elements of B are known and that global
optimization be used, which quickly becomes intractable.

In this article, we propose an optimization-free, algebraic
method for obtaining the structured state-space matrices for
RC-ladder systems of low to moderate order. To the best of
our knowledge, the Routh array procedure from [7] is the only
other algebraic method of parametric identification for these
systems. It is nevertheless prone to recursive accumulation of
error and does not directly yield the parameters, rather the
structured matrices only. We will now describe a method to
transform a black-box identified RC-ladder system into the
form of (2) and extract the Ri and Ci parameters from it,
solving the parametric identification problem in a efficient
manner. In Section III, we demonstrate our algorithm with
a Monte Carlo simulation, comparing it to [7], [12], and to
general grey-box optimization-based system identification.

II. STRUCTURED IDENTIFICATION PROCEDURE

A. Tridiagonalization of the State Transition Matrix

Assuming an arbitrarily transformed system Ŷ exists (e.g.
from subspace methods), the identification algorithm centres
around finding a unique similarity transformation T that can
tridiagonalize the Â matrix and transform the remaining state-
space matrices into the structure of (2). We will use the
following remarks about the special form of A:

(i) The state transition matrix A has tridiagonal form:
Aij = 0 ∀ {(i, j) | (i− j)2 > 1}.

(ii) The diagonal elements of A are all strictly negative:
Aii < 0, i = 1, . . . , n.

(iii) The co-diagonal elements of A are all strictly positive:
Aij > 0 ∀ {(i, j) | (i− j)2 = 1}.

(iv) A has only distinct, real eigenvalues [20, Corollary 3.1.1].
(v) All but the last row of A sum to zero:∑n

j=1Aij = 0 ∀ {i = 1, . . . , n− 1}.
Remarks (i)–(iii) define A as a “fixed-free” Jacobi struc-

tured matrix, implying Remark (iv). The specific tridiagonal
structure of A presents a starting point to find the similarity
transformation T that transforms the identified system Ŷ into
its structured representation.
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B. Existence and Uniqueness of the Tridiagonal Form
An important result regarding tridiagonalization states that

there exists a similarity transformation that tridiagonalizes
every real square matrix [21]. The Lanczos process [22] is a
commonly used method to find such a transformation. Given a
square n×n matrix Â and two starting vectors ~pn and ~qn, an
invertible matrix Q exists such that Q−1ÂQ = AT , where AT
is a tridiagonal matrix similar to Â and Q has last column ~qn.
This tridiagonalization is unique up to a diagonal scaling, but
for the moment, we can choose AT as having the particular
scaling such that its upper codiagonal is composed of only
ones. Furthermore, an invertible matrix P with last column
~pn exists that satisfies (6).

PT ÂQ = ΩAT = AS (6)

Where Ω is a particular diagonal scaling matrix that sym-
metrizes AT to produce symmetric tridiagonal matrix AS . The
matrices Q, P , AT , Ω, and AS are all uniquely determined to
within the diagonal scaling by ~qn and ~pn [23, Theorem 2.1].
For now, we will continue with the Lanczos tridiagonalization
and leave the diagonal scaling to be addressed in Section II-D.

C. Lanczos Starting Vectors
The tridiagonalizing similarity transformation matrices Q

and P may be defined in terms of their column vectors:

Q =

 ~q1 · · · ~qn

 (7)

P = Q−TΩ =

 ~p1 · · · ~pn

 , (8)

The vectors ~qn and ~pn necessary to define the transforma-
tion can be expressed in terms of the unstructured system.
Substituting (7) into (4) with T = Q, only the last column of
Q remains. We solve for ~qn in terms of the RC parameters:

~qn = D̂−1CnB̂ = RnCnB̂. (9)

Likewise, substituting (8) into (3) with T−1 = PT gives:

~pn = −D̂−1ĈT = −RnĈT . (10)

The parameter Rn in (9) and (10) is known from (5). To-
gether, (9) and (10) fulfill the conditions for tridiagonalization
using the Lanczos method. Provided the Lanczos process is
successful, the matrix AT shown in (11) is produced, which
is tridiagonal but still differs from the desired structured A by
the unknown diagonal scaling.

AT = Q−1ÂQ (11)

AT =


a1,1 1
a2,1 a2,2 1

a3,2 a3,3
. . .

. . . . . . 1
an,n−1 an,n

 . (12)

The parameter Cn from (9) is not known, but is a scalar
multiplier to the entire ~qn vector and Q matrix. This parameter
can therefore be factored out of Q and cancels out in (11),
so that AT will still be reconstructed correctly. Using PT to
transform B̂ and Ĉ according to (13) and (14) retains the
unknown Cn parameter only in matrix BT , where it can later
be extracted from the structured form following the remarks
in Section II-E.

BT = PT B̂ (13) CT = ĈP−T (14)

D. Restoring the Diagonal Scaling

The nonsymmetric tridiagonal AT achieved by the Lanczos
process has additonal degrees of freedom in the unknown
diagonal scaling. Specifying either the k = +1 or k = −1
diagonal fixes the other [24, Sec. 9.4.3]. Also, the elementwise
product between these diagonals is invariant under diagonal
scaling [23, Sec. 2.1]. We may apply a similarity transforma-
tion to (12) by a diagonal matrix S, shown in (15), that scales
the codiagonal products by scaling factors β1, β2, . . . , βn−1
without modifying the main diagonal elements.

S = diag
([∏n−1

i=1 βi
∏n−1
i=2 βi · · · βn−1 1

])
(15)

S−1ATS =



a1,1 β1
a2,1
β1

a2,2 β2

a3,2
β2

a3,3
. . .

. . . . . . βn−1
an,n−1

βn−1
an,n


(16)

Using Remark (v), a small least-squares problem may be
formulated to solve for the elements of S. Multiplying (16)
through by the scaling factors to eliminate reciprocals of β sets
up a system of equations in redefined variables si =

∏n−1
i βi.

The last row of the correctly scaled (16) does not sum to zero,
but its sum is equal to the last element of the matrix BT ,
known from (13).

Solving (17) determines the entries of S, which may then
be used to reconstruct Â(~θ) with the correct diagonal scaling.
The presence of 1 as the lower-right element of S means that
this similarity transformation does not modify BT or CT .

AT


s1
s2
...

sn−1
1

 =


0
0
...
0
1

RnCn

 (17)

E. Complete Algorithm1

To complete the procedure, a method for extracting the RC
parameters from the structured system is required. Assuming
the system has been placed in the form of (2), the Doyle aug-

mented matrix Ŷ =

[
Â(~θ) B̂(~θ)

Ĉ(~θ) D̂(~θ)

]
=

[
S−1ATS BT

CT D̂

]
1Code is provided in our repository: https://gitlab.ethz.ch/BMHT/

publications/distributed-sensing-along-fibres

This article has been accepted for publication in IEEE Transactions on Circuits and Systems--II: Express Briefs. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCSII.2023.3340505

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



4

RCLadderStructuredID

N4SID

~u

~y

Â
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Fig. 2. Signal flow diagram for the full procedure of Algorithm 1.

is formed by concatenation. An LU decomposition of Ŷ (e.g.,
efficiently using the well-known Crout method) produces the
matrices:

L =


1
−C1

C2
1
. . . . . .

−Cn−1

Cn
1

−Cn 1



U =


− 1
R1C1

1
R1C1

. . . . . .
− 1
RnCn

1
RnCn

2
Rn

 .
The convention of having all ones on the diagonal of L

ensures a unique decomposition. Taking the k = −1 diagonal
of L as ~l and the k = +1 diagonal of U as ~u, the Ci
and Ri parameters can then be isolated using (18) and (19),
respectively.

Ci =

i∏
j=n

−~lj (18) Ri =
1

~ui
Ci (19)

Figure 2 and the Algorithm 1 pseudocode present the full
procedure to identify the Ri and Ci parameters from input-
output data by first using standard subspace identification
methods to estimate a transformed system. Then, the proce-
dures described in this section exactly transform the arbitrary
system into the desired structured form.

III. EXAMPLES AND DISCUSSION

A. Reconstructing Randomly Transformed Systems

Algorithm performance was evaluated by running a Monte
Carlo simulation. 1900 “true” state-space models of order 2–
20 were created by randomly drawing Ri and Ci values from
a uniform distribution in the intervals [10 kΩ, 100 kΩ] and
[10 pF, 100 pF], respectively. The systems were then trans-
formed by a random Rn×n similarity transformation matrix
with elements drawn from a N ∼ (0, 1) normal distribution.
Algorithm 1 was used to reconstruct the “true” systems.
Structured identification was considered correct if the 2-norm
of the differences between true and reconstructed state-space
matrices were all less than 1%. Figure 3 shows the fraction of
correct reconstructions out of 100 trials for each system order
and the median computation time when run on a PC (Intel

Algorithm 1 Parameter identification from RC-ladder model
1: procedure RCLADDERSTRUCTUREDID(~u, ~y)
2: Â, B̂, Ĉ, D̂ = N4SID(~u, ~y) . Black-box ID [11]
3: ~qn = 1/D̂ · B̂
4: ~pn = −1/D̂ · Ĉ
5: AT , Q, P

T ,Ω = LANCZOS(Â, ~pn, ~qn) . See [23]
6: Aest, S = RCLADDERDIAGSCALING(Ω−1AT , PT B̂)
7: ~θ = RCLADDER2THETA(Aest, P

T B̂, ĈQΩ−1, D̂)
8: return ~θ
9: end procedure

10: procedure RCLADDERDIAGSCALING(A,B)
11: ~b = A[:,end]−B . Scaled rows of A sum to ~b
12: A← A[:,1:end-1]
13: ~s = (ATA)−1AT~b . Solve least-squares problem
14: S = diag([~s; 1])
15: A← S−1AS
16: return A,S
17: end procedure
18: procedure RCLADDER2THETA(A,B,C,D)
19: Y = [[A,B]; [C,D]]
20: U,L = CROUT(Y ) . LU decomp. of tridiag. matrix
21: ~c = −diag(L,−1)
22: for i = n− 1, i > 0, i← i− 1 do
23: ~c[i]← ~c[i] · ~c[i+ 1]
24: end for
25: ~r = diag(U, 1)
26: for i = 1, i ≤ n, i← i+ 1 do
27: ~r[i]← ~c[i]/~r[i]
28: end for
29: ~θ = [~r;~c]
30: return ~θ
31: end procedure
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Fig. 3. Left: a comparison of reconstruction accuracy (upper left) and
computation time (lower left) between our algorithm and [7] on randomly
transformed systems. Right: a comparison of accuracy (upper right) and
computation time (lower right, log scale) between our algorithm, [12], and the
MATLAB idgrey command on identifying the RC parameters from data.
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Core i9-10920X CPU, 3.5 GHz) for the algorithm described
here versus the Routh array method from [7].

We observe the proposed method results in nearly perfect
reconstruction for models of orders 2–11. For higher orders
(especially above 15), numerical instability causes breakdown
in the Lanczos process. The naı̈ve orthogonal Lanczos process
used here has no provisions to detect or correct breakdown.
Correction involves detecting the onset of breakdown and
continuing with new vectors ~pn and ~qn. This would unfortu-
nately invalidate (9) and (10). If the Lanczos tridiagonalization
succeeds without breakdown, then the algorithm will converge
to the unique solution of parameters. For low to moderate order
systems, we see empirically that breakdown is avoided and the
algorithm quickly obtains the unique solution. The Routh array
method has higher computation time and becomes numerically
unstable, even with systems of relatively low order (n > 6),
because its recursive nature leads to compounding errors.

B. Parametric Identification from Data
The previous example demonstrates the algorithm’s per-

formance in restoring the structure to randomly transformed
models. In practice, the unstructured model must first come
from another technique such as subspace identification. In
this example, the random models from Section III-A were
simulated to yield a frequency response at 128 logarithmically-
spaced points in the range [1 kHz, 10 MHz], without noise.
From these frequency-domain data, the N4SID algorithm was
used to estimate a continuous time, black-box system. The
structured state-space system and parameters were determined
from the black-box system using Algorithm 1. Results were
compared to the MATLAB idgrey command seeded with
random initial values, which uses optimization to find the
parameters of a grey-box model. We also compared with the
general structured identification method from [12]. Each of
the 2 · n parameters were considered successfully identified
if they were within 1% of the true value. Figure 3 shows
the results of this comparison for each model order with its
respective median computation time. Optimization methods for
grey-box identification such as [12] and idgrey are versatile
but slow and reconstruction accuracy is low for systems with
entirely unknown parameters. The method from [12] was not
run with systems of order n > 8 because of unreasonably
long computation times. With random initial values, idgrey
was unreliable for systems of order 5 or greater and was
approximately 250 times slower than even the Routh array
method. However, the speed and accuracy of the idgrey
results would likely greatly improve with a better initial guess.

IV. CONCLUSION

Although general structured identification methods are pow-
erful and versatile, we present here a faster and more success-
ful approach for the specific case of RC-ladder systems with all
unknown parameters. Our method outperforms both the only
other known algebraic method and also general optimization-
based approaches, while having much lower computation time.
This algorithm allows the deterministic, online solving of the
structured system identification problem involving small to
moderate scale SISO RC-ladder systems of practical interest.
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