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1 Introduction

Textile sensors transform our everyday clothing into a means to
track movement in a completely unobtrusive way. One major hin-
drance to the adoption of “smart” clothing is that connections bet-
ween rigid and textile elements are often unreliable and laborious
to produce [1, 2]. Distributed sensing is a promising solution to
this problem and has been demonstrated on the bench [3,4]. We
present a smart garment that can monitor three arm joint angles
from a continuous fibre with a single connection point. We achie-
ved around 5° error when compared to optical motion capture.

2 The Sensing Fibre

Our helical auxetic capacitive fibre strain sensor technology [5] has
several attractive features for distributed sensing:

e [ts auxetic behaviour unlocks a higher sensitivity (GF>1) than
theoretically expected for capacitive strain sensors.

e This sensitivity can be tuned by manipulating the helical pitch,
so that sensing regions near the joints have high sensitivity while
strain occurring in other areas is rejected.

e The outer coil and conductive polymer core form an electrical
transmission line.
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Figure 1: Prototype garment (left), sensing fibre geometric model and photographs (middle), strain response (right).

3 Distributed Sensing Method

e The sensor fibre is electrically similar to a cascade of infinitesi-
mally small RC low-pass filters.

e By probing the impedance of the line at multiple frequencies, the
spatial distribution of strain may be inferred.

e We developed a custom FPGA impedance analyzer and fixtures
to validate the method with a tensile testing apparatus.
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Figure 2: Procedure for device validation on the bench.

4 Results

e We embedded the sensing fibre along the arm of an athletic shirt.

e A test subject wore the shirt and performed a series of controlled
arm movements with the reference shoulder, elbow, and wrist
angles measured using optical motion capture.

e We trained a neural network regression model to predict these
joint angles from the impedance signals at 4 frequencies.
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Figure 3: Arm movements (left) and corresponding reconstructed strain signals and reference trace (middle, right).
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5 Conclusion

In this study, we have demonstrated distributed sensing in clothing
to monitor multi-joint arm movement with a single fibre sensor:

e \We achieve a test set root-mean-squared joint angle error of less
than 5° compared to the gold standard optical motion capture.

e We apply our sensing fibre in a way that allows the sensitivity to
be modulated along its length to reject unwanted strain signals.

e Our solution has a single pair of connections located at one end
of the fibre in a proximal “hub” location, which allows better com-
patibility with textile production methods.

We hope to explore the limits of sensing region density in fu-
ture work. We can envision using this technology to create multi-
sensing fabrics capable of measuring strain maps across the body
in real time.
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