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S1 Circuit Design Details

We present here a simple, compact, and inexpensive impedance analyzer system that enables 

distributed sensing on capacitive fibre strain sensors. The system is able to run at high speeds on 

a low-power commodity field-programmable gate array (FPGA) through a  series of hardware 

optimizations. We reduce digital logic complexity by having the phase-sensitive demodula-

tor (PSD) mixer operate on the single-bit sigma-delta (Σ∆) bistream to eliminate the need for 

complex multiplier circuits. We use the low-pass nature of the sensor itself to omit the analog re-

construction filter from the digital-to-analog converter (DAC). The Σ∆M design combined with 

distributed sensing allows reconfigurable time and spatial resolution, by changing the modula-

tor reconstruction filter parameters and excitation f requencies, r espectively. The components 

are described in the Subsections below with reference to Fig. 3d of the main text.

S1.1 Sine Wave Generator

The excitation sine wave generator uses a direct digital synthesis (DDS) approach, as is com-

monly used in electrical impedance tomography (44,45). A quarter-wave lookup table contains 

210 samples of a sine function at 12-bit precision. Symmetry logic allows this table to produce 

n sine and n cosine signals at frequencies between 1.56 kHz and 99.6 kHz with a time reso-

lution of 157 ns when driven by the 6.375 MHz main sampling clock. It is easily possible to 

increase the upper frequency limit range by expanding the lookup table. However, the analog 

front-end currently limits frequency to 100 kHz. The bit depth of the table was chosen from 

the predicted signal-to-quantization-noise ratio (SQNR) of the DAC, described in Section S1.2. 

The lookup table (LUT) is based on a multi-port ROM so that sine and cosine waves at multiple

frequencies {si[k], . . . , sNf [k], ci[k], . . . , cNf [k]} may be read simultaneously during distributed

sensing. Digital sine waves are summed to produce the discrete-time excitation signal vexc[t] 

that is sent to the DAC. The sine and corresponding cosine signal for each frequency channel



are also forwarded to the PSD through a calibrated delay line (mi in Fig. 3d of the main text,

calibration details described in Section S2) to compensate for the group delay of the analog

signal path.

S1.2 Digital-to-Analog Converter

The digital-to-analog converter was designed to minimize the number of analog components.

The DAC converts the 16-bit vexc[t] output of the SWG and produces an analog voltage signal

vexc(t). The low ratio of maximum SWG output frequency versus system clock frequency

motivated our choice of a sigma delta modulator (Σ∆M) DAC architecture. The primary benefit

of this architecture are its very low FPGA resource cost of just 129 logic elements and one

output pin. We implemented a single-bit, 32 times oversampling Σ∆M with a second order loop

filter, which has a known solution for unconditional stability (46, p. 75). However, higher order

Σ∆M loop filters may be designed with many methods, including some that utilize knowledge

of the input signal to improve performance and stability (47, 48). We omit the typical analog

low-pass reconstruction filter following the modulator to reduce the analog circuit complexity.

Instead, we designed the subsequent stages and use the low-pass nature of the sensor itself to

perform this filtering without increasing component count. A theoretical SQNR of 70 dB is

expected for a Σ∆M of this type (46, Eq. 3.5), which has an equivalent number of bits (ENOB)

of 11.33, motivating the choice of sine wave sample bit depth discussed above. An SQNR of

58 dB under in-circuit conditions was measured using an oscilloscope FFT function (Fig. S1).

S1.3 Transconductance Amplifier

The PSD impedance analysis technique relies on measurement of voltage vmeas(t) across the

load under excitation by a known current. The DAC output vexc(t) is a voltage waveform with

considerable high-frequency quantization noise introduced by the Σ∆M. This voltage must be



Figure S1: A frequency of 99.6 kHz was output by the SWG (the upper limit of the impedance
analyzer design) and used to measure a signal-to-quantization noise ratio (SQNR) of approxi-
mately 58 dB and spurious-free dynamic range (SFDR) of 46 dB.
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Figure S2: Analog front end PCB and TCA schematic. a, The analog front-end PCB with the
power regulation, input/output, and TCA and ADC components delineated. b, The transconduc-
tance amplifier consists of a modified Howland current source using OPA with AC decoupling
input capacitors C1, C2; selectable gain determined by R1, R2, jumper SW1, and R5 through
R8; feedback buffer OPB; and noise filtering set by R3, C3, R4, and C4.

converted to a current signal iexc(t) and low-pass filtered to remove the undesired quantization

noise. It is critical that the TCA provides accurate current output because iexc(t) itself is not

measured. We designed the transconductance amplifier (TCA) shown in Fig. S2b for this pur-

pose using a Howland current pump topology with a buffered feedback path to ensure consistent

amplitude across the frequency range (49). Single pole RC circuits in the op-amp negative feed-

back paths were tuned with a SPICE model to balance quantization noise rejection with roll-off

at the upper operating limit of 99.6 kHz. Jumper pins connected to SW1 allow the voltage-to-

current gain G of the TCA to be adjusted between 10−2 A V−1 and 10−5 A V−1 to broaden the

range of measurable impedances.

S1.4 Analog-to-Digital Converter

The core of the ADC block is the AD7724 (Analog Devices, Norwood, MA, USA) seventh-

order Σ∆M integrated circuit shown as placed on our PCB in Fig. S2a. This high-performance



ADC digitizes the vmeas(t) signal and provides an oversampled single-bit bitstream output that

is received by the FPGA. The ADC is preceded by a low-pass RC filter with a 105 kHz cutoff

frequency to provide antialiasing and further quantization noise removal. Because low-pass

filtering is required for extracting the in-phase and quadrature signals Îi[k], Q̂i[k], the digital

reconstruction filter required for the ADC is instead combined with the low-pass filters at the

end of the signal processing pipeline.

S1.5 Phase-Sensitive Demodulator

To reduce the digital circuit complexity, we implement digital mixers directly on the sigma-delta

bitstream to avoid the use of costly hardware multipliers. Arithmetic and logic operations are

commonly performed on Σ∆ bitstreams, including multiplication using the delta adder (50,51).

The mixers in our implementation operate on a 16-bit sinusoid reference signal and the single-

bit sigma-delta bitstream vmeas[k]. This simple case reduces the mixers to just one multiplexer

and a 2’s complement negation, in a similar method as (52). Each sinusoid sample is passed

through unchanged if a ‘1’ symbol is encountered in the bitstream and negated if a ‘0’ sym-

bol is encountered. The resulting words are then filtered to reconstruct the modulated signal

and extract the DC components shown in equations (9) and (10) of the main text. We used a

cascaded integrator comb (CIC) filter architecture because of its low area requirements, which

is important in this application because 2 · Nf filters are required, despite the iCE40 FPGA

family having relatively few logic resources. We used the Hogenauer pruning algorithm to set

the integrator and comb register widths to further conserve logic elements (53). The third-order

(N = 3, M = 1) CIC filter we designed has a very high decimation ratio of R = 218 to reduce

the 6.375 MHz oversampled data stream to a manageable ca. 24 Hz output data rate. The block

diagram of the CIC filter is shown in Fig. S3.
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Figure S3: The architecture of the CIC decimation filter consists of a  sign extension block, 3 
discrete-time integrators, a decimator, and 3 feed-forward comb sections for the in-phase I and 
quadrature Q components of each frequency channel i.

S1.6 Communication and Client Software

The output communication block implements a first-in-first-out sample buffer and a finite state 

machine to generate frames according to the MIN protocol (54). A linear feedback shift register 

generates a CRC-32 checksum to ensure data parity. Finally, a UART sends the output frames 

over a serial port. A custom Python program running on the PC receives the data packets, 

applies calibration, and converts them to the desired interpretation (I/Q, magnitude/phase, RC 

or RL circuit, or converted to estimated strain using a computer model). Processed data are then 

saved to a file and optionally displayed in real-time plots.

S1.7 Digital Logic Implementation

We used the open-source IceStorm toolchain (55) for logic simulation, synthesis, routing, and 

FPGA programming. FPGA resource utilization for our system with Nf = 4 is listed in Ta-

ble S1. All timing constraints were satisfied with the critical path having a maximum frequency 

in excess of 80 MHz.

S2 System Calibration Procedure

The system was calibrated using the LCR as a reference. The intent of calibration was to have 

reasonably accurate impedance values in real units, rather than to obtain perfect agreement with 

the LCR. The initial calibration was done to tune the compensation delay line length. The ideal



Table S1: Resource usage on the Lattice iCE40HX-8K low-cost FPGA.

Logic Type Utilization %

Logic element (LUT) 6982/7680 90%
RAM block 17/32 53%
I/O pin 35/256 13%
PLL block 1/2 50%

Figure S4: Delay line length versus indicated parallel capacitance, coloured by excitation fre-
quency.

value of mi is equal to the phase shift through the analog signal path at that frequency. Starting

values were obtained from SPICE simulations, then fine tuned experimentally with a 10 kΩ

resistive load. The ideal delay line length would result in a purely real impedance measurement

(zero capacitance). Thus, mi was tuned from the data collected in Fig. S4, choosing the value

where the curve corresponding to each excitation frequency crosses through zero.

The next step of calibration was done using a series of 6 resistive loads (Table S2a) with

reference values measured using the LCR meter. These measurements were used to construct

a frequency-dependent linear calibration factor for the in-phase component, Îi[k], shown in

Fig S9a. The quadrature component, Q̂i[k], was tuned using a similar method with 12 RC-

parallel loads (Table S2b), shown in Fig. S5b.



Table S2: Nominal values for the calibration standards. a, In-phase component (purely
resistive loads). b, Quadrature component (RC-parallel loads).

a

Resistance

1.5 kΩ
2.2 kΩ
3.3 kΩ
4.7 kΩ
6.8 kΩ
10 kΩ

b

Resistance Capacitance Resistance Capacitance

33 kΩ 1.0 pF 33 kΩ 47 pF
33 kΩ 2.2 pF 33 kΩ 68 pF
33 kΩ 4.7 pF 33 kΩ 100 pF
33 kΩ 6.8 pF 33 kΩ 220 pF
33 kΩ 10 pF 33 kΩ 470 pF
33 kΩ 22 pF 33 kΩ 680 pF

a b

Figure S5: Calibration curves measured with the purely resistive and RC-parallel stan-
dards, coloured by excitation frequency. a, In-phase. b, Quadrature.

Note that the highest frequency, 99.6 kHz (shown in red), is consistently lower for both in-

phase and quadrature components than the reference value. This is due to the roll-off of the

TCA filters at high frequency. During the quadrature calibration, a piecewise linear relationship

was observed for high frequencies (99.6 kHz and 49.8 kHz), depending on whether the in-phase

or quadrature component had higher magnitude (see Fig. S5b).

To verify that our calibration was sufficient for the types of sensors we fabricated, we mea-

sured the response of one sensor at a single frequency (10 kHz) and compared it to the LCR as

strain was swept from 0%–40%–0% in a staircase pattern. The results are shown in Fig. S6 and
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Figure S6: Single sensor testing at 10 kHz. a, The series capacitance of a single sensor seg-
ment at a single frequency during the staircase strain pattern, comparing our calibrated device 
to the LCR. b, The strain pattern produced by the UTM. c, The series resistance of the sensor 
agrees closely between the two readout methods and shows low piezoresistivity. d, A rendering 
of the sensor in strained, “flipped” state. e, A rendering of the sensor in unstrained state.

show close agreement to the LCR gold standard.

S3 Identifiability Analysis of the RC Ladder System

We seek to prove that the lumped approximation of the distributed transmission line sensor

model is identifiable. In systems theory, the concept of structural identifiability means that it is 

theoretically possible to infer the true parameter values from input-output data (56, Ch. 5.1.6). 

Specifically, g lobal s tructural i dentifiability me ans th at a un ique va lue ca n be  es timated for

each parameter, whereas local structural identifiability is a weaker concept and means that the 

parameter can be estimated to one of finitely many values (57). In the case of the sensor model, 

these parameters are the resistances Ri and capacitances Ci at each stage i along the chain, as

shown in Fig. 3b of the main article. We operate here on the 3- or 4-segment lumped model 

rather than the distributed parameter system. An important caveat to identifiability analysis is 

that in order to guarantee identifiability, it assumes constant parameters and an infinite number

of perfect measurements. Only limited information is gained about the type of input signal 

necessary to obtain accurate parameter estimations. Therefore, we do not claim that this analysis



is sufficient to prove completely that the distributed strain reconstruction is unique in practice,

rather it is a piece of evidence to support our findings in the paper and claims from other articles.

First, we introduce the concept behind identifiability analysis. Consider a linear regression

model with observations y(t), regressors xi(t), and parameters θi.

y(t) = θ0 + x1(t)θ1 + x2(t)θ2 + . . .+ xn(t)θn + ε

Assume we wish to find the parameters so that the linear model minimizes error ε in the

least-squares sense. By concatenating observations and parameters into column vectors and

stacking regressors into the matrix X , we obtain the familiar equation:

~θ =
(
XTX

)−1
XT~y. (S1)

Equation (S1) is solvable if the number of linearly independent columns ofX is greater than

or equal to the number of regression parameters, i.e. rank(X) ≥ n. Conversely, the system is

underdetermined if either there are fewer observations than parameters, or there are linearly

dependent columns of X . This rank test concept can be generalized to dynamic systems in

order to analyze structural identifiability. We introduce the general steps here and later provide

a script that analyzes our systems of interest. Given a system T represented in the form of a

vector of ordinary differential equations (ODEs):

T =

{
ẋ(t) = f(x(t), u(t), θ)

y(t) = h(x(t), u(t), θ).
(S2)

Where f and y are vector functions of the states x and input u, and θ is a vector of the

unknown parameters, we can expose the unknown parameters as constant states. Assuming

these parameters are slowly varying compared to x(t), their derivatives are equal to zero. The

augmented system with states x̃ =
[
x(t) θ

]T is shown in equation (S3).



T̃ =





˙̃x(t) =
[
f(x(t), u(t), θ) ~0nθ

]T
= f̃(x̃(t), u(t))

y(t) = h̃(x̃(t), u(t))
(S3)

We must now introduce the Lie derivative, which is necessary to construct the observability-

identifiability matrix for the system from equation (S2).

Definition 1 (Lie derivative (58, Def. 1)). The Lie derivative Lf̃ of the output function h with

respect to x̃ along the vector field f̃ is:

Lf̃h (x̃(t), u(t)) =
∂h̃

∂x̃
(x̃(t), u(t)) · f̃ (x̃(t), u(t)) .

Furthermore, the ith Lie derivative can be computed recursively as:

Li
f̃

=

{
h̃ (x̃(t), u(t)) i = 0

Lf̃

(
Li−1

f̃
h̃ (x̃(t), u(t))

)
i ≥ 1.

The observability-identifiability matrix O can then be formed by taking Lie derivatives up

to order nx̃ = nx + nθ:

O =
∂

∂x̃




L0
f̃
h (x̃(t), u(t))

L1
f̃
h (x̃(t), u(t))

...
Lnx̃−1

f̃
h (x̃(t), u(t))



. (S4)

The matrix from equation (S4) may be expressed in a similar form as X in equation (S1).

The main result states that the parameters θ are locally identifiable if and only if rank (O) = nx̃

(59). In the case that O is rank-deficient, we may have to consider the form of the input u(t)

(60). By using the extended Lie derivative (61, Eq. 3) and including terms for various time

derivatives of u(t), it is also possible to analyze the structural identifiability of T̃ under non-

constant input.

For our specific system, identifiability analysis begins from the lumped approximation of

the distributed impedance model (equation (2) in the main text). Taking the inverse to obtain



the admittance transfer function then converting to a state-space model with capacitor voltages

as states, we obtain equation (S5).

~̇x︷ ︸︸ ︷

d

dt




v1(t)
v2(t)
v3(t)
v4(t)


 =

A︷ ︸︸ ︷


− 1
R1C1

1
R1C1

0 0
1

R1C2
− 1
C2

(
1
R1

+ 1
R2

)
1

R2C2
0

0 1
R2C3

− 1
C3

(
1
R2

+ 1
R3

)
1

R3C3

0 0 1
R3C4

− 1
C4

(
1
R3

+ 1
R4

)




~x︷ ︸︸ ︷


v1(t)
v2(t)
v3(t)
v4(t)


+

B︷ ︸︸ ︷


0
0
0
1

R4C4


 vmeas(t)

iexc(t) =
[
0 0 0 − 1

R4

]
︸ ︷︷ ︸

C




v1(t)
v2(t)
v3(t)
v4(t)


+

1

R4︸︷︷︸
D

vmeas(t)

(S5)

With the ODEs from equation (S5), we may proceed with the identifiability analysis. We

perform this analysis using the computer algebra software Maple 2021 (MapleSoft, Waterloo,

ON, CA) with the scripts available in our repository1 and the Appendix. These scripts include

the following:

1. RC3Identifiability.mw (Appendix A.1) Local structural identifiability analysis

using a custom script implementing the algorithm outlined above, for the case of the

lumped RC ladder system with 3 stages (modelling the sensor layout used in Section 2

Joint Angle Monitoring of the main article).

2. RC4Identifiability.mw (Appendix A.2) Local and global structural identifiability

analysis computed with the SIAN tool (57) for the case of the lumped RC ladder system

with 4 stages (modelling the sensor layout used in Section 2 Localized Strain Reconstruc-

tion of the main article).

We found in 1. that the system is at least locally structurally identifiable if the input signal

derivatives up to order 3 were included. This indicates that the lumped system parameters may
1https://gitlab.ethz.ch/BMHT/publications/distributed-sensing-along-fibres

https://gitlab.ethz.ch/BMHT/publications/distributed-sensing-along-fibres


be estimated to a finite number of values if a sufficiently exciting input signal is provided, such

as the sum of sines used in our readout electronics. Because of computation time, we employed

the open-source software SIAN to analyze the 4-segment system in 2., which also provides

information about more rigorous global identifiability. This computational tool includes some

approximations to speed computation, for which there is a probability bound specified by the

user to trade off computation time and accuracy. The results from the computation indicate

that all 8 parameters of the system are globally structurally identifiable with probability bound

0.999.

S4 Effect of Bending on Sensor Response

The sensors were characterized on a UTM using unidirectional strain. In the garment, the

sensors are strained while undergoing bending around the joint. To better investigate the effect

of simultaneous bending on the sensor response, the sensors were tested on a jig with varying

radii of 12 cm to 4 cm, in order to resemble what they may be exposed to on the garment. The

response C(ε)−C(0)
C(0)

was calculated for three strain levels of approximately 20%, 40%, and 60%.

The tests were run for three sensor samples and the data compared to the response during strain

without bending (infinite radius). From the results shown in Fig. S7, no strong relationship

between radius and response is observed. There is a slight increase in response when bent at

small radii, but the variance between samples is generally greater than the variance because of

bending radius.

S5 Cyclic Durability Tests

A durability test was performed to examine the effect of wear that the garment would experience

during normal use, under controlled conditions. Particularly, it was desired to determine if

any change in sensitivity of the highly-sensitive and insensitive regions would occur because



a

0.00

0.25

0.50

0.75

1.00

¥ 12 10 8 6 4
Bend radius (cm)

S
e
n
s
o
r 

re
s
p
o
n
s
e
, 

D
C

C
0

Strain

60%
40%
20%

b

Figure S7: Simultaneous strain and bending test. a, The experimental test set-up, where the
sensor response is measured at different strain levels while being bent around varying radii.
b, Response of the sensors versus bend radius at three strain levels, where the solid line is
the average response and the shaded regions indicate the 90% confidence interval between 3
samples.

of wear and friction. A sensing fibre sample with one 8 cm highly-sensitive region and one

8 cm insensitive region was attached to a coupon of fabric in the same way as the garment

described in Section 4 Fibre Sensor and Prototype Garment Fabrication of the main text. The

two regions had respectively 8 mm and 3.5 mm pitch to exactly resemble those used in the

garment. The test coupon was mounted in the UTM (Fig. S8e) and the custom electronics were

used to record the impedance signals at the four frequencies 12.5 kHz, 25 kHz, 50 kHz, and

100 kHz. A triangular strain profile from 0% to 25% was applied to measure the pre-cyclic

testing response (Fig. S8a) and the gauge factor was calculated using the LCR gold standard

measurement device, separately for each sensitivity region, and also for the series connection

of both (entire sensor line) (Fig. S8d). Following this, the sample was exposed to 1 000 cycles

of straining from 2.5% to 22.5% with a 0.5 Hz sinusoidal profile. Fig. S8b shows the evolution

of the impedance signals at each of the excitation frequencies over the 1 000 cycles, recorded

with the custom electronics. After this cyclic testing, the response and gauge factor was again



measured in the same fashion (Fig. S8c, S8f). We observed very little drift in the signal across

the cyclic tests, and nearly identical gauge factors for each region. These results indicate that the

helical sensor configuration is robust against cyclic wear both in the high-sensitivity and low-

sensitivity configurations. There was an small plastic deformation that occurred primarily in the

textile backing during the first few extensions. This may been seen in Fig. S8 where the signal

is close to zero for strain below 5% and can be avoided with a mechanical pre-conditioning step

prior to manufacture. The pitch of each twist was also measured with calipers before and after

the cyclic testing with the results listed in Table S3. The difference in means between before

and after for both regions were found to be insignificant (p = 0.84 and p = 0.56, respectively).

S6 Validation Experiment Set-Up

The validation experiment discussed in Section 2 Localized Strain Reconstruction of the main

text is shown in Fig. S9b. The system includes the UTM tensile tester interfaced with the

custom made independent strain fixture. The readout system connects to the strain sensitive

fibre, is synchronized to the UTM, and is logged by a PC. The LCR device is intermittently

connected to provide a validation reference.

S7 Full Strain Reconstruction Results

Table S4 shows the full accuracy (RMSE) and correlation (R2) scores for the strain reconstruc-

tion experiment.

S8 Joint Angle Monitoring Experiment Set-Up

Fig. S10 demonstrates the garment as worn during the joint angle monitoring experiment. The

path of the strain sensitive fibre along the left arm may be seen in a selection of poses done

during the data collection. The upper-body OMC marker positions are also shown.



12.5 kHz

25 kHz

50 kHz

100 kHz

0 10 20

140

150

160

170

110

120

130

70

80

70

80

Strain (%)

S
e
ri
e
s
 c

a
p
a
c
it
a
n
c
e
 (

p
F

)

a 12.5 kHz

25 kHz

50 kHz

100 kHz

0 500 1000 1500 2000

140

150

160

170

110

120

130

70

80

70

80

Time (s)

S
e
ri
e
s
 c

a
p
a
c
it
a
n
c
e
 (

p
F

)

b 12.5 kHz

25 kHz

50 kHz

100 kHz

0 10 20

140

150

160

170

110

120

130

70

80

70

80

Strain (%)

S
e
ri
e
s
 c

a
p
a
c
it
a
n
c
e
 (

p
F

)

c

GF= 0.81

GF= 2.37

GF= 0.01

0.0

0.2

0.4

0.6

0.00 0.05 0.10 0.15 0.20 0.25
Strain (%)

S
e
ri
e
s
 c

a
p
a
c
it
a
n
c
e
 (

p
F

)

Pitch

8 mm
Both
3.5 mm

d e

GF= 0.84

GF= 2.29

GF= 0.02

0.0

0.2

0.4

0.6

0.00 0.05 0.10 0.15 0.20 0.25
Strain (%)

S
e
ri
e
s
 c

a
p
a
c
it
a
n
c
e
 (

p
F

)

Pitch

8 mm
Both
3.5 mm

f

Figure S8: Cyclic durability test. a, Sensor series capacitance response to a triangular strain
pattern at the four excitation frequencies prior to the cyclic durability test. b, Sensor series
capacitance at each frequency during 1000 cycles of 20% strain. c, Sensor series capacitance
response to a triangular strain pattern at the four excitation frequencies after the cyclic durability
test. d, Gauge factor quantified for the highly-sensitive region (green), insensitive region (blue),
and entire sensor (red), prior to the cyclic durability test. e, Photograph of the test set-up. f,
Gauge factor quantified after the cyclic durability test.



Table S3: Measurements of pitch for the sensitive and insensitive regions of the fibre before and
after 1 000 cycles of straining to 22.5%.

Twist Highly-Sensitive Region (mm) Insensitive Region (mm)

Nominal Before After Nominal Before After

1 8.00 7.57 7.00 3.50 2.72 3.39
2 8.00 7.66 7.44 3.50 1.94 3.47
3 8.00 7.94 7.80 3.50 2.32 2.68
4 8.00 8.16 8.70 3.50 3.52 2.55
5 8.00 8.84 7.75 3.50 3.64 3.06
6 8.00 7.90 7.18 3.50 2.52 4.31
7 8.00 7.65 7.91 3.50 3.15 2.47
8 8.00 7.70 7.57 3.50 3.14 2.74
9 8.00 7.23 8.87 3.50 3.30 3.36

10 8.00 7.43 7.36 3.50 3.18 3.36
11 3.50 3.50 3.26
12 3.50 3.04 3.83
13 3.50 3.74 3.06
14 3.50 3.19 3.50
15 3.50 3.60 3.39
16 3.50 3.03 3.67
17 3.50 4.00 3.12
18 3.50 3.68 3.95
19 3.50 3.84 3.60
20 3.50 3.81 4.05

Mean: 7.81 7.76 Mean: 2.94 3.34
SD: 0.45 0.61 SD: 0.55 0.50



a b

Figure S9: Design of the independent strain fixture and associated validation experiment
set-up. a, 3D model rendering of the fixture and the positioning of sensor segments I–IV within
it. b, Data collection set-up, including: A, UTM; B, independent strain fixture; C, readout
electronics; D, LCR meter; E, PC running client software.

Figure S10: Side and rear view of the prototype garment, sensing fibre path, and OMC marker
placement for some sample poses during the joint angle monitoring data collection.



Table S4: RMSE and R2 scores of MLP strain reconstruction algorithm performance across the
training, test, and validation sets, separated by sensor segment I–IV, number of sensors being
strained simultaneously ‘Single’/‘Double’, and overall performance ‘All’.

Train Validation Test Avg.

Segment RMSE R2 RMSE R2 RMSE R2 RMSE R2

I 0.0074 0.9953 0.0100 0.9916 0.0112 0.9895 0.0086 0.9937
II 0.0109 0.9924 0.0116 0.9913 0.0129 0.9892 0.0114 0.9917
III 0.0066 0.9972 0.0081 0.9957 0.0093 0.9945 0.0074 0.9965
IV 0.0077 0.9950 0.0079 0.9947 0.0083 0.9942 0.0079 0.9948

Single 0.0059 0.9965 0.0082 0.9936 0.0101 0.9903 0.0072 0.9949
Double 0.0104 0.9929 0.0107 0.9924 0.0108 0.9924 0.0105 0.9928

Avg. 0.0082 0.9950 0.0094 0.9933 0.0104 0.9918 0.0088 0.9942

S9 Full Joint Angle Regression Results

The tables below provide full fold-by-fold coefficients of determination (R2, Table S5a) and

root mean squared error (RMSE, Table S5b) for the joint angle regression problem using the

MLP model from main text Section 2 Joint Angle Monitoring. Fold 10 was used to obtain the

results reported in the main text. Fig. S11 shows the predicted versus reference joint angles for

each cross-validation fold.



Table S5: Full fold-by-fold results for joint angle reconstruction. a, R2 goodness of fit. b,
Root mean squared error.

a

Train Validation Test

Fold Shoulder Elbow Wrist Avg. Shoulder Elbow Wrist Avg. Shoulder Elbow Wrist Avg. Avg.

1 0.967 0.990 0.880 0.946 0.966 0.990 0.878 0.945 0.909 0.988 0.653 0.850 0.913
2 0.969 0.989 0.878 0.945 0.968 0.990 0.874 0.944 0.946 0.976 0.719 0.880 0.923
3 0.963 0.989 0.884 0.945 0.963 0.989 0.887 0.946 0.963 0.989 0.450 0.801 0.898
4 0.970 0.987 0.873 0.943 0.970 0.986 0.872 0.943 0.967 0.988 0.818 0.924 0.937
5 0.968 0.989 0.876 0.944 0.966 0.989 0.879 0.945 0.975 0.988 0.809 0.924 0.938
6 0.964 0.987 0.870 0.940 0.963 0.988 0.874 0.942 0.965 0.989 0.877 0.944 0.942
7 0.963 0.990 0.873 0.942 0.963 0.991 0.875 0.943 0.959 0.989 0.871 0.940 0.942
8 0.967 0.987 0.880 0.945 0.967 0.987 0.879 0.944 0.970 0.986 0.848 0.935 0.941
9 0.963 0.988 0.872 0.941 0.963 0.989 0.872 0.941 0.956 0.984 0.840 0.927 0.936

10 0.966 0.989 0.876 0.944 0.965 0.989 0.881 0.945 0.949 0.966 0.831 0.915 0.935

Avg. 0.966 0.989 0.876 0.944 0.965 0.989 0.877 0.944 0.956 0.984 0.772 0.904 0.930

b

Train Validation Test

Fold Shoulder Elbow Wrist Avg. Shoulder Elbow Wrist Avg. Shoulder Elbow Wrist Avg. Avg.

1 4.0◦ 3.4◦ 5.4◦ 4.2◦ 4.0◦ 3.4◦ 5.3◦ 4.2◦ 5.7◦ 3.8◦ 11.9◦ 7.1◦ 5.2◦

2 3.8◦ 3.5◦ 5.6◦ 4.3◦ 3.9◦ 3.5◦ 5.7◦ 4.4◦ 5.1◦ 4.9◦ 7.7◦ 5.9◦ 4.9◦

3 4.2◦ 3.6◦ 5.5◦ 4.4◦ 4.1◦ 3.6◦ 5.5◦ 4.4◦ 4.2◦ 3.3◦ 10.4◦ 6.0◦ 4.9◦

4 3.8◦ 3.9◦ 5.8◦ 4.5◦ 3.8◦ 3.9◦ 5.7◦ 4.5◦ 3.7◦ 3.8◦ 6.0◦ 4.5◦ 4.5◦

5 3.9◦ 3.6◦ 5.6◦ 4.4◦ 3.9◦ 3.6◦ 5.6◦ 4.4◦ 3.6◦ 3.8◦ 7.2◦ 4.9◦ 4.5◦

6 4.1◦ 3.8◦ 5.8◦ 4.6◦ 4.1◦ 3.8◦ 5.7◦ 4.5◦ 4.2◦ 3.6◦ 5.4◦ 4.4◦ 4.5◦

7 4.2◦ 3.3◦ 5.7◦ 4.4◦ 4.2◦ 3.3◦ 5.7◦ 4.4◦ 4.3◦ 3.6◦ 5.4◦ 4.4◦ 4.4◦

8 3.9◦ 3.8◦ 5.5◦ 4.4◦ 4.0◦ 3.9◦ 5.5◦ 4.5◦ 3.8◦ 4.1◦ 6.5◦ 4.8◦ 4.6◦

9 4.2◦ 3.7◦ 5.7◦ 4.5◦ 4.2◦ 3.6◦ 5.7◦ 4.5◦ 4.5◦ 4.2◦ 6.3◦ 5.0◦ 4.7◦

10 4.0◦ 3.5◦ 5.6◦ 4.4◦ 4.0◦ 3.5◦ 5.6◦ 4.4◦ 4.9◦ 6.5◦ 6.1◦ 5.8◦ 4.9◦

Avg. 4.0◦ 3.6◦ 5.6◦ 4.4◦ 4.0◦ 3.6◦ 5.6◦ 4.4◦ 4.4◦ 4.1◦ 7.3◦ 5.3◦ 4.7◦
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Figure S11: Folds 1–9 of joint angle reconstruction cross-validation on the test dataset.



(1)(1)

> > 

Identifiability Analysis of 3-Segement RC Ladder

This script corresponds to the analysis performed in 1. in the Supplementary Materials Section S3.

Define the system of differential equations, output equation, parameter vector, and a vector of 
derivatives of the input.

A Appendices

A.1 Identifiability Analysis of 3-Segement RC Ladder



> > 

(1)(1)

(2)(2)

Construct the augmented system, where parameters are exposed as additional states with their 
derivative equal to zero.



(1)(1)

> > 

(4)(4)

(5)(5)

(2)(2)

> > 

> > 

(3)(3)

> > 

> > 
Define the Lie derivative and the function for the recursive (ordinary) Lie derivative.

Define the extended Lie derivative function following Ref. [59] from the SI.

Warning, (in extended_lie_derivative_n) `j` is implicitly declared 
local
Build the observability-identifiability matrix.

9

Compute the rank.

9



> > 

(1)(1)

> > 

(2)(2)

Identifiability Analysis of 4-Segment RC Ladder using SIAN

This script corresponds to the analysis performed in 2. in the Supplementary Materials Section S3.

Load SIAN (ref. [] from the Supplementary Materials).

Warning, (in IdentifiabilityODE) `poly_system` is implicitly 
declared local |T:/SIAN/IdentifiabilityODE.mpl:2|

Perfom the analysis.

=======================================================
0. Extracting states, inputs, outputs, and parameters from the
system
=======================================================

=== Input info ===
State variables: [x__1(t), x__2(t), x__3(t), x__4(t)]

A.2 Identifiability Analysis of 4-Segement RC Ladder using SIAN



(2)(2)

Output variables: [y(t)]
Input variables: [u(t)]
Parameters in equations:  [C__1, C__2, C__3, C__4, R__1, R__2, 
R__3, R__4]
===================

=======================================================
1. Constructing the maximal polynomial system
=======================================================

=======================================================
2. Truncating the polynomial system based on the Jacobian condition
=======================================================
Bound D_1 for testing the rank of the Jacobian probabilistically:
2408640000
Orders of prolongations of the outputs (beta) =  [13]
Orders of prolongations of the state variables (alpha) =  [10, 11,
12, 13]

=======================================================
3. Assessing local identifiability
=======================================================
Locally identifiable paramters:  [C__1, C__2, C__3, C__4, R__1, 
R__2, R__3, R__4, x__1(0), x__2(0), x__3(0), x__4(0)]
Nonidentifiable parameter:  []

=======================================================
4. Randomizing the truncated system
=======================================================
Bound D_2 for assessing global identifiability:
179035738700000000000000000000000000
Random sample for the outputs and inputs is generated from  [C__1 =
14449619280057457198789934560189054, C__2 =
94578252034387475272501414671279978, C__3 =
20403931651476058735363641966623742, C__4 =
159990195552613830032884526592025815, R__1 =
55150294749342137112511814113255422, R__2 =
147408281933588652098259998059508103, R__3 =
82266696142337968714515768144842604, R__4 =
135069511684012613289060082390337356, x__1_0 =
158264958354780925939464563956985268, x__2_0 =
5031319957561582272198932044713782, x__3_0 =
78996133382945196976668941048110318, x__4_0 =
155736813300766026337448996445453158]
The polynomial system widehat{E^t} contains  55 equations in  54  
variables

=======================================================
Applying Weighted Ordering
=======================================================
Variable ordering to be used for Groebner basis computation 
[x__4_12, x__4_11, x__3_11, x__4_10, x__3_10, x__2_10, x__4_9, 
x__3_9, x__2_9, x__1_9, x__4_8, x__3_8, x__2_8, x__1_8, x__4_7, 
x__3_7, x__2_7, x__1_7, x__4_6, x__3_6, x__2_6, x__1_6, x__4_5, 
x__3_5, x__2_5, x__1_5, x__4_4, x__3_4, x__2_4, x__1_4, x__4_3, 
x__3_3, x__2_3, x__1_3, x__4_2, x__3_2, x__2_2, x__1_2, x__4_1, 



> > 

(2)(2)

x__3_1, x__2_1, x__1_1, x__4_0, x__3_0, x__2_0, x__1_0, z_aux, 
w_aux, C__1, C__2, C__3, C__4, R__1, R__2, R__3, R__4]
Weight assignment: [x__3_0 = x__3_0^2, x__1_1 = x__1_1^4, z_aux = 
z_aux^3, x__2_7 = x__2_7^3, x__2_8 = x__2_8^3, x__2_9 = x__2_9^3, 
x__1_0 = x__1_0^4, x__2_1 = x__2_1^3, x__2_6 = x__2_6^3, x__3_1 = 
x__3_1^2, x__3_5 = x__3_5^2, x__3_2 = x__3_2^2, x__2_2 = x__2_2^3, 
x__3_4 = x__3_4^2, x__3_6 = x__3_6^2, x__2_4 = x__2_4^3, x__3_3 = 
x__3_3^2, x__4_6 = x__4_6, x__2_5 = x__2_5^3, x__4_1 = x__4_1, 
x__4_10 = x__4_10, x__1_6 = x__1_6^4, x__4_2 = x__4_2, x__1_8 = 
x__1_8^4, x__2_0 = x__2_0^3, x__4_12 = x__4_12, x__1_9 = x__1_9^4, 
x__4_4 = x__4_4, x__3_7 = x__3_7^2, x__1_2 = x__1_2^4, x__1_5 = 
x__1_5^4, x__4_3 = x__4_3, x__1_7 = x__1_7^4, x__4_11 = x__4_11, 
x__4_9 = x__4_9, x__4_8 = x__4_8, x__2_10 = x__2_10^3, x__3_11 = 
x__3_11^2, x__4_5 = x__4_5, x__3_9 = x__3_9^2, x__4_7 = x__4_7, 
x__1_4 = x__1_4^4, x__3_10 = x__3_10^2, x__2_3 = x__2_3^3, x__3_8 =
x__3_8^2, x__1_3 = x__1_3^4, x__4_0 = x__4_0]

=======================================================
5. Assessing global identifiability
=======================================================
The number of solutions for C__1 is 1
The number of solutions for C__2 is 1
The number of solutions for C__3 is 1
The number of solutions for C__4 is 1
The number of solutions for R__1 is 1
The number of solutions for R__2 is 1
The number of solutions for R__3 is 1
The number of solutions for R__4 is 1
The number of solutions for x__1_0 is 1
The number of solutions for x__2_0 is 1
The number of solutions for x__3_0 is 1
The number of solutions for x__4_0 is 1

=== Summary ===
Globally identifiable parameters:                  [C__1, C__2, 
C__3, C__4, R__1, R__2, R__3, R__4, x__1(0), x__2(0), x__3(0), x__4
(0)]
Locally but not globally identifiable parameters:  []
Not identifiable parameters: []
===============

=======================================================
WARNING: The result of solution counting is guaranteed with high 
probability, however it NOT the same probability 'p' as provided in
the input.
=======================================================

output
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