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Introduction



Project Objectives

Primary Objective
To develop a systematic method of design for sigma delta A/D
converters for the recording of bio-signals.

Ideally, the goals of the method are to:

• Model the nonlinear system accurately in a way that allows
analysis of existing designs.

• Reduce dependence on simulation.
• Provide a way to design guaranteed stable sigma delta
modulators in a way that minimizes conservatism.
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Principles of Sigma Delta Modulation

Figure 1: An example EEG signal [1] digitized to 5 bits with naïve quantization
(left), 10 times oversampled quantization (middle), and first-order sigma
delta modulation (right).

Oversampling
Sampling a signal at a rate higher than what the Nyquist-Shannon
sampling theorem would dictate.

Noise Shaping
The use of a filter to push quantization noise out of the signal band
by wrapping the quantizer in a feedback loop.
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Basic Structure of a Sigma Delta Modulator

$ OSR · fs
AAF

S/H
−

∫LF
 

DRF

↓ OSR

Linear Model
NTF

STF

Figure 2: A simplified block diagram of a discrete-time sigma delta A/D
converter.
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Figure 3: A simplified block diagram of a continuous-time sigma delta A/D
converter.
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Design of the Loop Filter

The nonlinear quantizer in the forward path makes stability analysis
difficult. Loop filter design is commonly done in one of several ways:

• Pure integrator – DC-stable for low order loops [2].
• Prototype NTF – noise rejection of linear model chosen from a
family of filters [3, Appx. B].

• Optimization-based approaches – wide range of techniques.

The design process often relies on extensive simulation to confirm
that stability is likely during normal operation and the circuit may
include complicated instability detection and recovery mechanisms
[4, 5, 6, 7].
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Stability and Performance



H∞ Stability Criterion

H∞ Stability Criterion
Lee’s rule states that a modulator is probably stable if the peak of
the NTF frequency response is less than a heuristic value.

||NTF(z)||∞ / 2

• Rule-of-thumb developed empirically from observations on a
4th order DT modulator [8].

• Generally conservative for 2nd order loops, approximately
correct for 3rd order, and inadequate for higher order [9].

• Common in existing design tools [3, Appx. B].
• Easy to apply as a control optimization problem.
• No straightforward relationship between maximum stable input
and the Lee criterion value.

On the Design of Stable, High Performance Sigma Delta Modulators — Brett Hannigan 6



H∞ Stability Criterion

H∞ Stability Criterion
Lee’s rule states that a modulator is probably stable if the peak of
the NTF frequency response is less than a heuristic value.

||NTF(z)||∞ / 2

• Rule-of-thumb developed empirically from observations on a
4th order DT modulator [8].

• Generally conservative for 2nd order loops, approximately
correct for 3rd order, and inadequate for higher order [9].

• Common in existing design tools [3, Appx. B].
• Easy to apply as a control optimization problem.
• No straightforward relationship between maximum stable input
and the Lee criterion value.

On the Design of Stable, High Performance Sigma Delta Modulators — Brett Hannigan 6



H∞ Stability Criterion

H∞ Stability Criterion
Lee’s rule states that a modulator is probably stable if the peak of
the NTF frequency response is less than a heuristic value.

||NTF(z)||∞ / 2

• Rule-of-thumb developed empirically from observations on a
4th order DT modulator [8].

• Generally conservative for 2nd order loops, approximately
correct for 3rd order, and inadequate for higher order [9].

• Common in existing design tools [3, Appx. B].
• Easy to apply as a control optimization problem.
• No straightforward relationship between maximum stable input
and the Lee criterion value.

On the Design of Stable, High Performance Sigma Delta Modulators — Brett Hannigan 6



H∞ Stability Criterion

H∞ Stability Criterion
Lee’s rule states that a modulator is probably stable if the peak of
the NTF frequency response is less than a heuristic value.

||NTF(z)||∞ / 2

• Rule-of-thumb developed empirically from observations on a
4th order DT modulator [8].

• Generally conservative for 2nd order loops, approximately
correct for 3rd order, and inadequate for higher order [9].

• Common in existing design tools [3, Appx. B].

• Easy to apply as a control optimization problem.
• No straightforward relationship between maximum stable input
and the Lee criterion value.

On the Design of Stable, High Performance Sigma Delta Modulators — Brett Hannigan 6



H∞ Stability Criterion

H∞ Stability Criterion
Lee’s rule states that a modulator is probably stable if the peak of
the NTF frequency response is less than a heuristic value.

||NTF(z)||∞ / 2

• Rule-of-thumb developed empirically from observations on a
4th order DT modulator [8].

• Generally conservative for 2nd order loops, approximately
correct for 3rd order, and inadequate for higher order [9].

• Common in existing design tools [3, Appx. B].
• Easy to apply as a control optimization problem.

• No straightforward relationship between maximum stable input
and the Lee criterion value.

On the Design of Stable, High Performance Sigma Delta Modulators — Brett Hannigan 6



H∞ Stability Criterion

H∞ Stability Criterion
Lee’s rule states that a modulator is probably stable if the peak of
the NTF frequency response is less than a heuristic value.

||NTF(z)||∞ / 2

• Rule-of-thumb developed empirically from observations on a
4th order DT modulator [8].

• Generally conservative for 2nd order loops, approximately
correct for 3rd order, and inadequate for higher order [9].

• Common in existing design tools [3, Appx. B].
• Easy to apply as a control optimization problem.
• No straightforward relationship between maximum stable input
and the Lee criterion value.

On the Design of Stable, High Performance Sigma Delta Modulators — Brett Hannigan 6



Root Locus Stability Criterion

Root Locus Stability Criterion
The describing function of the nonlinear quantizer is a variable
gain dependent on quantizer input amplitude. A modulator loop is
stable if the root locus remains in the stable region of the complex
plane when sweeping through valid quantizer gains.

|NTF(z, K)| ≤ 1 ∀K ∈ [kl, kh]

• Has been used to produce designs by examining pole and zero
departure angles [10, 11, 12].

• Can predict the maximum stable input amplitude.
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H2 Stability Criterion

H2 Stability Criterion
The H2 stability criterion predicts stability for a class of
norm-bounded input signals r if the squared 2-norm (power gain)
of the NTF is less than a value calculated by placing assumptions
on the statistical distribution of the quantizer input signal u.

||NTF(z)||22 ≤ f(r,u)

• Splits signals into DC baseline with superposition of the AC
component, uses additional degrees of freedom to enforce that
the quantization error is uncorrelated with quantizer input [13].

• A good approximation as long as the chosen quantizer input
PDF is accurate.

• Can predict the maximum stable input amplitude.
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ℓ1 Stability Criterion

ℓ1 Stability Criterion
The input to the quantizer can be bounded for a class of
norm-bounded input signals r if the absolute value of the sum of
loop filter impulse response coefficients (maximum peak-to-peak
gain) is bounded .

min
K

||ntfK[n]||1 ≤ 3− ||r||∞

• Sufficient criterion for BIBO stability [14].
• Uses the worst-case gain of the filter, usually resulting in very
conservative designs [13].

• Determines the maximum stable input amplitude.
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Performance

Performance Goal

min ||NTF(z)||∞ z ∈ [jωl, jωh]

• Want to maximize the quantization noise rejection in the signal
band.

• Two main options:
• Addition of weighting filters to the NTF channel, then use H∞

control techniques.
• Apply the Generalized KYP lemma which provides a link between a
finite-frequency inequality and a set of LMIs.
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Similar Work



Similar Work

Table 1: A comparison of some recent work on sigma delta modulator
design as a control optimization problem.

Ref. Optimized
norms

NTF
Type

Performance
goal

Stability criteria

[15] H∞, H2, ℓ1 IIR Weighting
filters

H∞, H2

[16] H∞ IIR1 GKYP Not reported
[17] H∞ FIR GKYP ℓ1 mentioned, H∞

used
[18] H∞ IIR GKYP H∞

[19] H∞, H2, ℓ1 FIR Weighting
filters

ℓ1 mentioned, H∞

used
This H∞, H2, ℓ1 IIR GKYP H∞, root locus,H2, ℓ1
1 Only the zeros of the IIR filter are optimized.
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Optimization



Modelling

e u
∆

r
−

H(z) K y

Augmented System G(z)

w z

Figure 4: The augmented system model with channels of interest extracted.

G :


ẋ
z
e
u
y

 =


AH − k22BHCH −k21BH BH

k12CH k11 0
−k22CH −k21 1
CH 0 0
k22CH k21 0


xw
r


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Semidefinite Program

LMIs exist for the GKYP Lemma [20], H2 norm [21], and ⋆-norm
[22, 23], an upper bound of the ℓ1 norm, but there are some caveats:

• LMIs are non-convex for IIR filters because there is a product
term of the pole coefficients.

• The ⋆-norm LMI has a non-convex scalar term.
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Convexification

The authors in [18] showed how to manipulate the GKYP LMI by
assuming the augmented system is in CCF so that there is only one
occurrence of the non-convex term in a form like:

· · ·+

[
aaT a
aT 1

]
≥ 0

With this reduction, attempted the following:

• Use of general non-convex solver.
• Use of rank-constrained LMI solver.
• Applying Shor’s relaxation to linearize the problem.
• Performing an iterative method [24].
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H∞ Stability Criterion i
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Figure 5: The performance (maximum simulated SQNR) and stability
(simulated MSIA) achieved with the H∞ modulator design for different Lee
criterion goals.
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H∞ Stability Criterion ii

Figure 6: The noise transfer function generated with the H∞ stability
criterion and associated optimization targets.
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H∞ Stability Criterion iii
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Figure 7: Simulation data for the modulator generated with the H∞ stability
critierion.
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Root Locus Stability Criterion i
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Figure 8: The performance (maximum simulated SQNR) and stability
(simulated MSIA) achieved with the root locus modulator design for different
quantizer gain robustness goals.
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Root Locus Stability Criterion ii

Figure 9: The noise transfer function generated with the root locus stability
criterion and associated optimization targets.
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Root Locus Stability Criterion iii
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Figure 10: The root locus for the design produced when [kl, kh] = [0.1,∞).
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H2 Stability Criterion i
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Figure 11: The performance (maximum simulated SQNR) and stability
achieved with the modulator design for H2 norm goals.
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H2 Stability Criterion ii
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Figure 12: Simulation data for the modulator generated with the H2 stability
criterion.
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Figure 13: The performance (maximum simulated SQNR) and stability
achieved with the modulator design for ⋆-norm goals.
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ℓ1 Stability Criterion ii

Figure 14: The noise transfer function generated with the ℓ1 stability criterion
and associated optimization targets.
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Summary of Examples

Table 2: The performance and stability observations from simulations done
on modulators designed using each stability criterion.

Type Peak SQNR MSIA (pred.) MSIA (sim.) LRIA

DSToolbox 87 dB N/A 0.76 FS −96 dB
H∞ 86dB at 0.62 FS N/A 0.71 FS −91 dB
Root locus 66 dB N/A 1 FS −52 dB
H2 78 dB at 0.73 FS 0.69 FS 0.78 FS −84 dB
ℓ1 59 dB 0.68 FS 1 FS −41 dB
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Conclusion



Contributions

• Development of an algorithm that unites sigma delta modulator
design using H∞, H2, and ℓ1 stability criteria with the GKYP
performance goal supporting both FIR and IIR filters.

• Extending the LMI system from [18] to be compatible with other
channels of the augmented system.

• Modelling the quantizer gain as an uncertainty and using
optimization to enforce stability for a range of quantizer gains.

• Presenting a proof-of-concept of using this work to directly
design continuous-time loop filters.
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Limitations

• The influence of integrator state saturation is not captured by
the model.

• LMI expressions are not feasible for loop filters with poles or
zeros exactly on the unit circle.

• Convergence is dependent on choice of optimization parameters
and initial conditions.

• It can be difficult to avoid pole-zero cancellations with high
order designs.
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Future Work

• Incorporate constraints on transfer function coefficients for ease
of implementation.

• Explore implementation of a sigma delta DAC designed using
this method on an FPGA.

• Find better optimization targets for continuous-time modulator
design.
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Questions?
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Modelling Uncertain Quantizer Gain
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Figure 15: The sigma delta loop with the quantizer represented as an
uncertain gain.
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Figure 16: The linearized block diagram with the quantizer replaced by a
multiplicative uncertainty extracted via LFT.
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Iterative Convexification Procedure

• Find feasible initial condition a0.
• Separate out non-convex term:[

aaT a
aT 0

]
=

[
(a0 + a1)(a0 + a1)T − a1aT1 a0 + a1

(a0 + a1)T 0

]
=[

(a0aT0 + a0aT1 + a1aT0 a0 + a1
(a0 + a1)T 0

]

• Using known a0, solve the non-convex problem in a1.
• Repeat process until termination criteria met.

a = a0 + a1
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Convergence
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Figure 17: An example of the dependence of the iterative optimization
scheme on initial conditions.
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